Loading...
00-0222 �1 f Renovation ,. LINDA COURT, INC. 7311 SW 59th Ct South Miami, Florida 0 The followirig calculations for wind loading are in accordance with the South Florida Building Code 1994 Edition Section 2309.1, to incorporate Section 6 of ANSI/ASCE 7-93. These calculations include references to Figures and Tables in Section 6 of ANEWASCE 7-93, except as noted. This Project is located more than 1500 ft. leeward of the CCCL, therefore it is not considered in theCoastal Construction Zone. All buildings and structures are considered to be at the Hurricane Ocean Line, in accordance with SFBC 2309.1 (b). All buildings and structures not in the Coastal Construction Zone are considered to be in Exposure Category C, in accordance with SFBC 2309.1 (d). A. Calculation of velocitypre55ure, q and q V := 110 mph Basic wind Speed, per Figure 1. 1 := 1.05 Importance Factor, per Table 5, Category 1. h ;= 12.0 ft. Mean Roof Height, for flat roof h Velocity Pressure Coefficients, per Table 6, for Exposure C ,K evaluated at mean roof height h <= 15 ft. ; Kz, evaluated at z<= 15 ft. K h := 0.80 K z15 0.80 Velocity Pressure Constant C, for calculating design velocity pressure: C Y := 0.00256 Velocity Pressures: evaluated at mean roof ht. h <=15 ft. ; q evaluated at z<= 15 ft. h := C (I V)2 0lz := Cy•Kz15•(1•V)2 a h = 27.32 p5f q z = 27.32 pof n Date: 07/21/98 John H � � �? E � 12806,1KSW Page: 1 9 x � r 6����#QQ- q • d t• ,'� ,v`,yAr .r. 13 Design Wind Loading for the Main Wind Force Reoioting 5yotem (MWFR5): ` A- Gu5t Reoponoe Factors, per Table 8, for Exposure C Gh. evaluated at mean roof ht. h = 15 ft. G h := 1.32 _ ^ . External Pressure Coefficients, per Figure 2., use controlling roof slope. Roof Preooure Goef f icicritcl C for flat roof olope, 0 = 0.0 deoreeo: Normal to Ridge, Normal to Ridge, Parallel to Ridge, Windward 51ope Leeward Slope Either Slope h/L <= 0.5 h/L = All values h/5 or h/L <= 2.5 C pwr := -0.7 C Or ;_ -0.7 C ppr := -0.7 Roof Preooure Coefficients, G for Roof.Overhanoo: r C poh := 0.8 (+) preooure on the bottom surface, and additive with preooureo indicated in. Figure 2. B.. a) Determine MWFR5 Deoign Preooureo for Roof Surface. Internal Preooure Coefficiento for Buildingo, GC P,, per Table 9. Condition 1, with % of openingo in one wall not exceeding the sum of the% of openings in the remaining walls by 5% or more; and the % of openingo in any one of the remaining walla or - roof do exceed 20%. GC := 0.25 GC = -0.25 evaluated for both pooitive(+) and negative(-) conditiono. - pip Pin East and West wind direction on Sloped roof (controlling condition); Windward Roof; eval.w/qh at 15 ft., with (+) internal pressure eval. w/o[, at 15 ft., with (-)internal preooure P ww_ip '_ qh*G h'C pwr - gh*GC pip P ww_in '_ q h'G h*C pwr qh'GC pin P ww_ip = 32.07 pof. P ww_in = 18.41 pof. Leeward Roof; eval. w/c, at 15 ft:, with (+) internal pressure eval. w/c, at 15 ft., with (-) internal preooure P Ir_ip '_ q h'G h'C plr - � h'GC pip P Ir_in h*G h-C plr - h'GC pin P Ir_ip = 32.07 pof. P Ir_in ={18.41 pof. JO -ff H.k6uschdr, RE,."'. Date: 07/21/98 1285h Terr. { Mia"rnt" F � +�.�, Page: 2 1 � i j Te 3 38 o. 4� _ x Wuj Iry L PE # 1844 c Roof 5ections f arallel to Wind Direction; eval. w/oL at 15 ft., with (+) internal pressure eval. w/q, at 15 ft., with (-) internal pressure u P pr—ip q h'G h*C ppr h'GC pip p pr_irn h'G h'C ppr h'GC pin p pr_ip = 32.07 psf. p pr-in = 18.41 psf. Roof Overharngs; eval. w/q, at 15 ft. P oh q h'G h'(C' plr - C poh) p oh = 34.10 psf. C. Design Wind Fressures for Components and Cladding, for flat roof area. External Pressure Coefficients GC for wind loads on building components or cladding; For Buildings with Mean Roof Height, h <= 60 ft., and with Roof 5lope < 10 degrees , per Figure 3. For Roof 5urface5 which do not lie within areas bounded by edge or corner width, a, referred to as Zone 1 in Figure 3; and for Roof Edge Zones (incl. overhang width), referred to a5 Zone 2 in Fig. 3; and for Roof Corner Zones (incl. overhang width), referred to ao Zone 3 in Fig. 3; and a = distance from building corner = smaller value of 10% of minimum width, or 0.4h. 0.4•h = 4.� also, a >= 4% of minimum width, or a >= 3 ft. Therefore since b = 63 ft. (+-) and h = 12.0 ft., a = 5 ft. An asterisk Shown after the tributary area quantity indicates that the"length/3"option io used. C. a) Roof Component Fressure Coefficients, GCpr, for any roof slope. Component Zone Area GCp Design Fressure Roof Joist 1 >= 100 of.' GC prtl :_ -1.2 p rtl q h'(OC prtl + GC pin) P rtl = 39.62 psf. Roof Joist 2 >= 100 of., GC prt2 '_ -1.5 p rt2 '= q h'(GC prt2 + GC pin) P rt2 = 47.81 psf. Roof Beam 1 >= 100 of. GC prbl '_ -1.2 p rb1 '= gh'(GC prb1 + GC pin) P rbl = 39.62 psf. Roof Beam 2 >= 100 5f. GC prb3 '_ -1.5 p rb2 '= q h'(GC prb3 + GC pin) p rb2 = 47.81 psf. John H. Buscher, P.E Date: 07/21198 128058 (A"S Te,, rr. Miarr � � � .Y Page: 3 Te ,30 ' '8 76� - L PE $44 AL Roof Deckin >=. 5 . 1.4 + GC 9 1 10 f GC prc1 = - p dc1 '= a h� GG( prc1 pin) connection p dc1 = -46.08 p5f. Roof Decking 2 >= 10 5f. GC prc3 '_ -2.6 p 6ic2 '_ gh'(GC prc3 + GC pin) - connection p dc2 = 77.86 p5f. Roof Decking 3 >= 10 5f. GC prc3 '_ -4.0 p dc3 '_ h (GG prc3 + GC pin) connection p dc3 = 116.11 p5f. Roof Membrane 1 >= 10 5f. GC prcl := -1.4 p rcl '_ 01 h'(GC prc1) connection P rc1 = 38.25 p5f. Roof Membrane 2 >= 10 5f. GC prc3 -2.6 p rc2 '_ 01 h'(GC prc3) connection P rc2 - 71.03 p5f. Roof Membrane 3 >= 10 5f. GG prc3 '_ -4'0 p rc3 '_ h'(GC prc3) connection. P rc3 = 109.28 p5f. John H. (M 6r, P Date: 07/21/98 12805SW 68 h"*T rr. Miamr; � �$ � s t Page: 4 Tel 305 �$t; o 276 i Y .•f CFFF } � e� 1 •r _Y4� �F•.r as L PE #4'1844 Z �� fi C. b) Wall Component Preooure Coefficients, GCpw, for any roof Slope. T Component Zone Area GCp Design Preooure y . Door 4,5 >= 100 of. GC pb4p := 1.20 p b4p1 q h'(GC pb4p + GC pip) Header Beam p b4p1 - 39.62 p5f. ' x 4 GC pb4p -1.25 p b4n1 '_ q h,(GG pb4p + GC pin) P b4n1 - 40.98 p5f. 5 GC pb5n -1.5 p b5n1 q h*(GC pb5n + GC pin) p b5n1 - 47.81 p5f. Wall 4,5 >= 150 of. GC pc4,p := 1.15 p c4p1 '_ 01 h*(GC pc4p + GC pip) Column P c4p1 - 58.25 p5f. - 4 GC pc4n -1.22 p c4n1 q h-(GC pc4p + GC pin) P c4n1 - 40.16 pof. 5 GC pc5n -1.4 P c5n1 q h'(GC pc5n + GC pin) P c5n1 - 45.08 p5f. r Wall Section, 4,5 >= 100 of. GC pw4.p := 1.20 p w4p1 gh-(GG pc4p + GC pip) Door or Window P w4p1 = 38.25 p5f. 4 GC pw4n -1.25 p w4n1 q h-(GC pw4n + GC pin) P w4rn1 = 40.98 pof. 5 GG pw5n -1.5 P w5n1 q h*(GC pw5n + GC pin) P w5n1 - 47.81 pof. John H. Buscher,,PE. Date: 07/21/98 12805 SW f; *� ' Miami-4r, � 33x8 �S Page: 5 C Te 30586 7276 ie L PE f Wall Section, 4,5 >= 50 5f. GC pw4p := 1.2 P w4p2 q h'(GC pw4p + GC pip) Door or Window P w4p2 = 39.62 p5f. 4 GC pw4p -1.3 P w4p2 '_ qh-(GC pw4p + GC pin) r P w4p2 - 42.35 p5f. 5 GC pw5n -1.6 P w4p2 qh*(GC pw5n + GC pin) P w4p2 - -50.54 p5f. Wall Section, 4,5 >= 20 5f. GC pw4p := 1.3 P w4p2 '_ q h'(GC pw4p + GC pip) Door or Window P w4p2 = 42.35 p5f. 4 GC pw4p -1.35 p w4p2 '_ qh'(GC pw4p + GC pin) P w4p2 = 43.71 p5f. 5 GC pw5n :_ -1.8 P w4p2 q h'(GC pw5n + GC pin) P w,4,12 - X6.01 p5f. Y Wall Section, 4,5 >= 10 5f. GC pw4p 1.4 P w4p2 q h'(GC pw4p + GC pip) Door or Window P w4p2 = 45.08 p5f. 4 GC pw4p -1.5 P w4p2 '_ q h'(GC pw4p + GC pin) P w4p2 - 47.81 p5f. 5 GC pw5n :_ -2.0 P w4p2 '_ q h'(GC pw5n + GC pin) P w4n2 - -61.47 p5f. John H. , LI'S er; Date: 07/21/98 12805 1'err. Mi� '�� Page: 6 Ted � : 7 70 ` L PE'#41844 D. Design Roof Gravity Loads a) Roof Dead Loads, Built-up roof tar & gravel w mem := 5.0 pof. 3"concrete fill on w deck 28.5 pof. 1 1/2"x 22 ga. Steel decking Prefab Steel bar joists w joist 2.5 pof. Plaster ceiling w ceiling 8.0 pof. Insulation (ioo-board, 10" wins 5.0 pof. max. thickness) W mech 5.0 pof. Mechanical Duct allowance d) Roof Dead Load for uplift calculations: w rdl—up — w deck + wjoi5t w rdl — 31.00 pof. e) Roof Dead Load, total v w rdl '= w mem + w deck + w joist + w ceiling w rdl - 54.00 pof. + w mech + w ino f) Roof Live Load for slope>= flat: w rll '= 30.0 pof. g) Combined Roof Dead and Live Loads: W r_grav '= w rdl + w rll w r_grav = 84.00 pof. h) Misc. Dead Loads, Normal weight Concrete w conc 150.0 pof. John Hscher, P.E. Date: 07/21/98 128.0 :Y nth-Tern X1.83 Page: 7 MW taw 1 4 1844 W E) Check Design Capacity for 1 1/2"Standard Steel decking WK22 , t= 0.0295" 1) Gravity Loads: w r_grav = 84.00 psf. sjoist 4.0 ft. I deck 0.181 in.4/ft. 5 deck 0.194 in.3/ft. Fer Design Tables, for s = 5.0 ft, Simple Span, ~ safe uniform total load = 91 pof > w r_grav - 84.00 psf, O.K. John H. cher, P.E. Date: 07/21198 12805 t , .th.Terr. Mim t ,4`83, Page: 8 f. 'A. < T , 305-3 6=7276 i lxp�. t L PE #418 44 Z�/s� E. Check 8" x 24"tie column, located along South wall for lateral load: trib := 15.5 ft. p c4n1 = 40.16 pof. _ Crib- 11.3•p c4rn1 w u 1000 w u = 0.81 kips/ft. on column For clear ht. between floor and deck: L col := 12 ft., a. Determine V and Mbot for intermediate first Span condition: t .= 7.625 in. b .= 24 in. d .= t — (2.75) d = 4.88 in. L col d V u—max := w u 2 2.12 v u_max = 4.69 kips. w u•L col 2 Mbot u := 8 Mbot u = 14.57 ft-kips. Mtop u := Mbot u b. Check Shear otirrup5 and Bottom longitudinal rebar: f c := 3000 poi. f y := 60000 poi. For Shear: := 0.85 d 0.31 w u•0.5•L p := 2 p = 0.01 col 12 b•d = 0.14 < 1.0 n Mtop u d w u•0.5•L col' 12 OV c = 1000 c 1.9• + 2500•p Mtop u c•12.61 OV = 10.53 kips. � Ov c = 2 5.26 kips. < V u max = 4.69 kips. —. Jo Buscher, P.E. Date: 07/21/98 805'` th Tern Miame� -3t8' Page: 9 t Tel•3. 5-386'7276. PE X4,1844 For Bending Moment: := 0.9 Mbot u = 14.57 ft-kips b = 24.00 in. d = 4.88 in. 2 Mbot u•12000 b.d.fc _ (b.d.fc1 _ 2.b.fc. Abot 5 .= ` ) 0 fy Abot 5 3 = 6.04009.10 P �= b d P P P max 0.0213 = 0.28 < 0.5 ; deflection Ok, P max Abot 5 = 0.71 inz., Abot prov 3.0.31 Abot prov = 0.93 in2., for 3 #5 rebaro provided., OK John h r, P.E. Date: 07/21/98 12805 �8 err. Miami ' ��" = Page: 10 j` Tel 304-3g FL PE #4' 44 New Commercial Building for: Linda Court, Inc. 7315 5W 59th Court S. Miami, Florida Lateral loading Calculations for Roof Deck Diaphragm The following calculations for wind loading are in accordance with the South Florida Building Code 1994 Edition Section 2309.1, to incorporate Section 6 of ANSI/ASCE 7-93. These calculations include references to Figures and Tables in Section 6 of ANSI/ASCE 7-93, except a5 noted. This Project is located more than 1500 ft. leeward of the CCCL, therefore it i5 not considered in theCoaotal Construction Zone. All buildings and Structures are considered to be at the Hurricane Ocean Line, in accordance with 5FBC 2309.1 (b). All buildings and structures not in the Coastal Construction Zone are considered to be in Exposure Category C, in accordance with 5FBC 2309.1 (d). A. Calculation of velocity pressure, g. and q= • V := 110 mph Basic wind Speed, per Figure 1. 1 := 1.05 Importance Factor, per Table 5, Category 1. h := 12.0 ft. Mean Roof Height, for flat roof Velocity Pre55ure Coefficients, per Table 6, for Exposure C Kh, evaluated at mean roof height h = 15 ft. ; Kz, evaluated at z<= 15 ft. K h := 0.80 K z15 0.80 Velocity Prcooure Constant C, for calculating design velocity pressure: C Y := 0.00256 Velocity Pressures: evaluated at mean roof ht. h = 15 ft. ; q , evaluated at z<= 15 ft. �lh CY•Kh. 1•V)2 qz CY'Kz15•(1•V)2 a h = 27.32 p5f q z = 27.32 psf John H.fB s tier, P.E. Date: 07/21/98 12805 SV `� t err. - Miami° ..�:•�'� l� `� Page: 1 z c 10 - 7 T 305-386= 276 .�• F L P E#4'1844• �Z`l 13 Design Wind Loading for the Main Wind Force Resisting System (MWFRS): Gust Re5pon5e Factors, per Table 8, for Exposure C GW evaluated at mean roof ht. h = 15 ft. G h 1.32 External FresSure Coefficients, per Figure 2., use controlling roof Slope. Roof FresSure Coefficients C for flat roof slope, 0 = 0.0 degrees: Normal to Ridge, Normal to Ridge, Farallel to Ridge, Windward Slope Leeward Slope Either Slope h/L <= 0.5 h/L = All values h/5 or h/L<= 2.5 C pwr := -0.7 C pir -0.7 C ppr := -0.7 Roof Fre55ure Coefficients C , for Roof Overhangs: C poh := 0.8 (+) pr000ure on the bottom Surface, and additive with pre55ure5 indicated in Figure 2. Wall FresSure Coefficients C L per Figure 2_ Windward Wall Leeward Wall Leeward Wall Side Walls L/B = All values L/B >= 1 L/5 >= 2 L/B = All values C pww 0.8 C p1w1 :_ -0.5 C plw2 := -0-3 C pow -0.7 B. a) Determine MWFRS Design Fressure5 for Roof Surface. Internal FresSure Coefficients for Buildings, GC P,, per Table 9. Condition 1, with of openings in one wall not exceeding the Sum of the% of openings in the remaining wa115 by 5% or more; and the % of openings in any one of the remaining walls or roof do exceed 20%. t GC pip := 0.25 GC pin -0.25 evaluated for both pooitive(±) and negative(-) conditio'no. East and West wind direction on roof (controlling condition); Windward Roof; eval. w/q at 15 ft., with (+)internal pressure eval. w/a,, at 15 ft., with (-) internal pressure P ww_ip '_ qh*G h'C pwr gh'GG pip p ww_in :_ qh*G h*C pwr - h'GC pin P ww_ip = 32.07 p5f. p ww_in = 18.41 p5f. John H_.,Bu � r-, ,,, Date: 07/21/98 12805=� � Mia rnkIDA IF C ."t �� g Page: 2 Te 305-3�1 ell FL PE#41844 `� 4 Leeward Roof; eval. w/a' at 15 ft., with (+) internal pre55ure eval. w/o[ at 15 ft., with (-) internal pre55ure P Ir_ip a h*G h-C plr - q h'GC pip p Ir_in q h'G h*C plr - q h'GC pin P Ir_ip = 32.07 p5f. p Ir_in = 18.41 p5f. Roof 5ection5 Farallel to Wind Direction; eval. w/c, at 15 ft., with (+)internal pre55ure eval. w/c, at 15 ft., with (-) internal pre55ure P pr_ip h G h C ppr h'GC pip p pr '- h'G h'C ppr h'GC pin P pr-ip = 32.07 p5f. p pr-in = 18.41 p5f. Roof Overhangs; eval. w/C� at 15 ft. poh qh'Gh*(C plr - Cpoh) p oh = 34.10 pcf. B. c) Determine MWFR5 Design Fre55ure5/for Wall 5urface5. Windward Wall h = 15.0 ft. z<= 15.0 ft. Excluding FarT(5ee Farapet wind load section/ (+) internal pre55ure L (-) internal pre55ure r p ww_ip '- z--, (C pww +G� p ww_in z G h*(C pww + GC pin) 7.87 5f. = 19.83 5f. - p ww_ip p p ww_in p Leeward L11, h 15.0 ft. z<= 15.0 ft. LB <= 1 (+) interna pre55ure (-) internal pre55ure P Iw_ipl h*G h.(C plwl + GC pip) p Iw_in1 a h,G h.(C plw1 + GC pin) P Iw_ipl = 9.O2 . p5f. p Iw-in1 = 27.05 pof. Leeward Wall, h = 15.0 ft., L/B = 2 (+) internal pre55ure (-) internal pre55ure P Iw_ip2 q h'G h (C p1w2 + GC pip) p Iw_in2 q h'G h'(C p1w2 + GC pin) P Iw_ip2 = 1.80 p5f. p Iw_in2 = 19.83 p5f. Side Walls, h = 15.0 ft., L/B = All values (+) internal pre55ure (-) internal pre55ure P 5w_ip :- h G h•(C pow + GC pip) p ow-in �.h*G h'(C pow + GC pin) P 5w_ip = 16.23 \ p5f. p 5w-in = 34.26 p5f. John HA 8� '404 P.E. Date: 07121/98 1280.5 AtMgrr. Miarnk. a, Page: 3 Tel 30'5-3'8M6'-IY76 V.' it i FL 84 7 f PE 19g B: d) Determine Design Fre55ure5 for Parapet Wall Surfaces. G f := 1.4 for M/N <= 16 per Table 13 p pw '_ h'G h'c f P pw = 50.49 p5f. A) Determine Roof Diaphragm uniform loading on Front face of building B 4 7.2 5 ft. L := 62.9 17 ft. L = 1.33 B 1) Windward Wall H := 12.0 ft. H w ww := p ww_ip•2 w ww = 227.20 plf. L 2) Leeward Wall H := 12.0 ft. B = 1.33 H W Iw I p Iw_ip1 ( 2 w Iw = 54.10 plf. 3) Parapet Wall 1 H 1 := 1.75 ft. B p1 := 33.0 ft. w pwl := p pw•H 1 w pwl = (58.36 plf. Parapet Wall 2 H 2 := 3.25 ft. B p2 := 14.25 ft. W pw2 := p pw•H 2 w pw2 = 164.09 plf. 4) Total uniform load along 47.25 ft.(elevation: L \H + .5•H 1)'w pw1]-13 p1 + r(H + .5•H 2)'w pw2 E3 p2 • 47total B'w ww + B•w Iw + , •47total = 19074.45 lbs. 4) Shear Reaction and max. uniform Shear along 62.917 ft. 5ide5 due to windward and leeward winds: 1 V 47total '= W 47total'- V 47total = 9537.22 Ib5. V 47total v 63unit '= L v 63unit = 151.58 plf. max. John H. Buszh E.E. Date: 07/21198 12805 SW 68T err. �.- Miami,.F : 1 : U ,, Page: 4 Tel 305;38 a v t t wV. F E#41$44 .f ~ 5) Unit Shear load due to negative wind pressure on Side walls: H void'-wall '- 1pow-irii *2 v 5idewall - 205.56 plf. 6) Combined Unit Shear load due to negative wind pre55ure on Side walls: 2 0.5 V comb (v 63un 2 it + v 5idewall ) v comb - 255.41 pif. along 63 ft. edge John H,,Buscher,_P.E. Date: 07/21/98 12805 SWI 6 , rr. . Miami,=F e: 5 J,,�Z�e��/� ,' ' Page: IF1 4, Tel 306;3 -7276 ` 4.` 6 � z FL PE#4 844-7 .t y B) Determine Roof Diaphragm uniform loading on 62.917 foot face of building B := 62.917 ft. L := 47.25 ft. 1) Windward Wall H := 12.0 ft. H w ww '= p ww_ip'2 w ww = 227.20 plf. L 2) Leeward Wall H := 10.0 ft. B = 0.75 H W Iw := I p Iw_ipl 12 w Iw = 45.08 plf. 3) Parapet Wall 3 H 3 := 1.75 ft. B p3 := 62.917 ft. w pw3 '= p pw'H 3 w pw3 = 88.36 plf. 4) Total uniform load along 63 ft. elevation: w pw3•(H + 0.5•H 3)•B W 63total '_ "' ww'B + w Iw•B + \ H W 63total = 23176.49 lbs. 4) Shear Reaction and max uniform Shear along ft. sides due to windward and leeward winds: 1 V 63total '= W 63total*- V 63total = 11588.24 lbs. Y 63total v 47unit '_ v 47unit = 245.25 plf. max. 5) Unit Shear load due to negative wind pressure on Side walls: H v 5idewall '= I Pow in I '2 v 5idewall = 171.30 plf. 6) Combined Unit Shear load due to rnc�jative wind pre55ure on Side walls: 2 0.5 V comb2 '_ (v 47un 2 it + v 5idewall v comb2 = 299.15 plf. along 47 ft. edge Therefore design new diaphragm components for v diaph '_ v comb2 v diaph = 299.15 pif. John- . B r P.E., 414. Date: 07/21/98 12805 SW,6 r. page: 6 Miari�lE `. b, `F Tel 305-386,7276 a y, L PE#41844 ,y- C) Determine Design Capacity for 1 1/2"Standard Steel decking, WK22 , t= 0.0295" Per Table V7 of the Steel Deck Institute Diaphragm Design Manual, 2nd Edition: For • Fria-rrae \ Wing: 5/8' di welds on 0/4 pat ern Stitch Fastens g: (1 #10 crews (Buil per 0 foo an (joist-to joist) Allowable design shear: v allow := 270 plf, with a 2.75 safety factor > v diaph = 299.15 plf. O.K. Determine required connection to Perirmeter .ri leo: t := 0.0295 in 99 0 f •t•(0.625 - t)•1000 for A. 46 - A decking Steel with Fy = 33koi. 2.75 0 f = 632.42 lbs per 5/5"diam spot wcId to Support steel For one weld at 2'-0"o.c. along Steel perimett r angle: v weld '= 0 f*0.5 v weld = 316.21 lbs. > v allow - 270.00 Ibo. O.K. i John H Buscher, P.E. Date: 07/21/98 12805` g :err. MiZIFUM1. ` , Page: 7 '`I'iTe 305386-72f6'. � ; STt+�r . FL PE#41844 J tn Whole Building Performance Method for Commercial Buildings Form 400A-97 ENERGY EFFICIENCY CODE FOR BUILDING CONSTRUCTION Florida Department of Community Affairs FLA/COM-97 Version 2 .2 PROJECT NAME_LINDA COURT, INC. PERMITTING OFFICE: ADDRESS: _7315 SW 59TH COURT DADE COUNTY _MIAMI, .FL. CLIMATE ZONE: 8 OWNER: _LINDA COURT PERMIT NO: AGENT: JURISDICTION-NO: 231000 BUILDING TYPE: Mercantile (Retail) CONSTRUCTION CONDITION: Existing Bu1'. ing DESIGN COMPLETION: Addition CONDITIONED FLOOR AREA: 2993 NUMBER OF ZONES: 1 MAX. TONNAGE OF EQUIPMENT PER SYSTEM: 5 COMPLIANCE CALCULATION: METHOD A DESIGN CRITERIA RESULT ----------------- ------ -------- ------ A. WHOLE BUILDING 69 .07 100 .00 PASSES PRESCRIPTIVE REQUIREMENTS: r � LIGHTING LIGHTING CONTROL REQUIREMENTS PASSES HVAC EQUIPMENT COOLING EQUIPMENT 1. EER 9 .80 7 .60 PASSES HEATING EQUIPMENT 1. Et 1.00 N/A AIR DISTRIBUTION SYSTEM INSULATION REQUIREMENTS 1. Unconditioned Space 6.00 4 .20 PASSES REHEAT SYSTEM TYPES USED ELECTRICAL SYSTEM MATER HEATING EQUIPMENT 1. EF 1.00 0.82 PASSES PIPING INSULATION REQUIREMENTS 1. Circulating 1.00 0.99 PASSES -----------------------------------------------------------=---------------- COMPLIANCE CERTIFICATION: I hereby certify the the plans and Review of the plans and specifica- specificationsr-acovh ell by this calcu- tions covered by this calculation lation cc, ante with the indicates compliance with the Florida E en Code. Florida Energy Efficiency Code. PREPARED B Before construction is completed, - DATE: this building will be inspected _ .. , for compliance in accordance with I hereby cer f' a t is building is Section 553 .908, Florida Statutes. in compliance ' h the Florida Energy BUILDING OFFICIAL: Efficiency Code. DATE: OWNER/AGENT: DATE: Thereby certify(*) that the system design is in compliance with the Florida Energy Efficiency Code. SYSTEM DESIGNER REGISTRATION/STATE ARCHITECT MECHANICAL: PLUMBING ELECTRICAL: LIGHTING (*) Signature is required where Florida law requires design to be performed by registered design professionals. Typed names and registration numbers may be used where all relevant information is contained on signed/sealed plans. ,w a BUILDING ENVELOPE SYSTEMS COMPLIANCE CHECK 401`'x;------GLAZING--ZONE 1------------------------------------------------v- Elevation Type U SC VLT Shading Area (Sgft) --------- --------------- ---- ---- ---- -------------- ---------- East Commercial 1.31 .92 1. 00 None 124 West Commercial 1.31 . 92 1. 00 None 232 Total Glass Area in Zone 1 = 356 Total Glass Area = 356 402 - ------WALLS--ZONE 1------------------------------------------------ --- Elevation Type U Insul R Gross (Sgft) --------- -------------------------------- ----- ------- ----------- West 8" CBS .241 5 232 South 8" CBS .241 5 567 Total Wall Area in Zone 1 = 799 Total Gross Wall Area = 799 -403 - ------DOORS--ZONE 1------------------------------------------------ --- Elevation Type U Area (Sgft) --------- ------------------------------------------ ----- ---------- West 1-3/4 Wood Door-Hollow core flush 0 .46 21 Total Door Area in Zone 1 = 21 Total Door Area = 21 404 - ------ROOFS--ZONE 1------------------------------------------------ --- Type Color U Insul R Area (Sgft) ------------------------------------ ------ ----- ------- ---------- CONC.METAL JOIST Medium . 05 19 2993 Total Roof Area in Zone 1 = 2993 Total Roof Area = 2993 405 - ------FLOORS-ZONE 1------------------------------------------------ --- Type Insul R Area (Sgft) ---------------------------------------=-------- ------- ---------- Slab on Grade/Uninsulated 0 2993 Total Floor Area in Zone 1 = 2993 Total Floor Area = 2993 406 - ------INFILTRATION-------------------------------------------------- --- - Infiltration Criteria in 406 . 1 .ABCD have been met . ICHECK MECHANICAL SYSTEMS CHECK HVAC load sizing has been performed. (407 .1 .ABCD) 407 - ------COOLING SYSTEMS----------------------------------------------- --- Type No Efficiency IPLV Tons ---------------------------- --- ---------- ----- -------------- 1 . Packaged Terminal Unit 2 9 . 8 1 5 .33 408 - ------HEATING SYSTEMS----------------------------------------------- --- Type ' No Efficiency BTU/hr -------------------------------- --- ---------- -------------- 1 . Electric Resistance 2 1 11946 409 - ------VENTILATION--------------------------------------------------- --- ICHECK Ventilation Criteria in 409 .1.ABCD have been met. 410 - -----AIR DISTRIBUTION SYSTEM---------------------------------------- --- CHECK ------------------------------------------------------- ------ ---- --- Duct sizing and design have been performed. (410 .1.ABCD) ;AHU Type Duct Location R-value ----------------------------------- ---------------------- ------- 1. Air Conditioners Unconditioned Space 6 CHECK -------------------------------------------------- --------- ---- --- Testing and balancing will be performed. (410 .1.ABCD) 411. -----PUMPS AND PIPING-ZONE ----------------------------------------- --- Basic prescriptive requirements in 411. 1.ABCD have been met. _ PLUMBING SYSTEMS 411. -----PUMPS AND PIPING-ZONE 1--------------------------------------- --- Type R-value/in Diameter Thickness ------------------------ ---------- -------- --------- 1 . Circulating 4 .2 1 .25 1 412 . -----WATER HEATING SYSTEMS-ZONE 1------------------------------ --- --- Type Efficiency StandbyLoss InputRate Gallons 1 . <=12 kW 1 1 6000 80 ELECTRICAL SYSTEMS CHECK 413 . -----ELECTRICAL POWER DISTRIBUTION---------------------------- ----- --- Metering criteria in 413 . 1.ABCD have been met . 414 . -----MOTORS--------------------------------------------------- ----- --- Motor efficiencies in 414 . 1.ABCD have been met. 415 . -----LIGHTING .SYSTEMS-ZONE 1--------------------------------------- --- Space Type No Control Type 1 No Control Type 2 No Watts Area (Sgft) ---------- --- -------------- --- -------------- --- ------ ---------- Type B (Fin 1 On/Off 4 None 5740 2993 Total Watts for Zone 1 = 5740 Total Area for Zone 1 = 2993 Total Watts = 5740 Total Area = 2993 CHECK Lighting criteria in 415 . 1.ABCD have been met . -------------------------------------------- ----- --- 16 .. Operation/maintenance manual will be provided to owner. (102 . 1) ---------------------------------------------------------------------------- 04/22/98 til Z r r 111. v J J N IL i— O' �► n1 ,� 'Q O a w lu •4 cn � + � U 4 4 � <:q p N .Q N x x x x x j(X: m 0 . c� c� d1 � cv C`1 csl z � a ° d, —A U = U x co d a O x x x x x X x m z � v C'S N N N Ci =3 � � v , olw ,v � �` 3 � IIIIIII � � 3 Ilk �q `t O AC O pr_ w _ tc, o; JZ N yr Cl) N W � U ci c<1 tf' to � r cA 6i 0 c^i ccl 'd' CITY OF SOUTH MIAMI REVISION APPLICATION 6130 SUNSET DRIVE,SOUTH MIAMI,FLORIDA 33143 (305)663-6355 PROJECT ADDRESS: PROPERTY OWNER: PHONE ADDRESS: CONTRACTOR/OWNER BUILDER b 11G�� PHONE ADDRES O- �'9O 1 �J �• ��� LI THIS APPLICATION IS FOR A REVISION(S) TO PERMIT NO. 7 DESCRIBE REVISION(S):(PLEA/SE BE SPEjCIFICJ) ? . . . .... .. . .. . .... .... .. .... GNATURE OF ig!� CTORQUALIFIER SIGNATURE OF PROVERTY OuwlEk '• OTARY• NOTARY: •. .• • . . .. ...... ...... .... . . . . . .. ..... .... .... . . OFFICIAL USE ONLY ...• • APPROVED DATE DISAPPR. DATE COMMENTS FEES • ZONING CITY CODE ENF REVIEW , STRUCT. C, BLDG. PLUMB. ELECT. MECH. TOTAL CONDITIONS: APPLICATION RECEIVED BY: REVISION NO. Z 2 1 � • , �. JOHN H. BUSCE, r2, P.E. Structural • Civil Construction Management n' r?orzf-.5s - �l J *3 Cum ��Pe,,�,� � S-rR�--tc�►i��. C�v��., �o Ms�t.t�Nts a�JT� 8 J��1�, C')V ST(&,C-) (3W( ; L&/.i 5 TO �vH Pc.�' G✓/1G�7�i3 N Nt�v� (, E rccX2- (`� S . 0 i, co-a `IAT-qpj�LOt . v,��� L.r�>✓cbS� i�R- cv� c,e+u t�f€2S.ar�►.������ o� �`?_t (Z-2 v4we�9 INN 1'1�t F✓rGC c+� o J c �?1 D IC or CAG66 W- col: 7 Gt r -� pbxK- ��, C,4,r� I?r fw S�e� tit Q'/I e" NGTE.S G,-142e2. T/71 r— �"v 57 ewt 'Pafy far- oe?wA-!!� >�S DiSoc r3 p a�� psi �Tr �7 . fon.4rfQ'� l�ob�Sc po.Ary ace �r4tfw CaLi/,f-try 77 Tr4�S - pGt�� &LV- /KifiF-71. tj 1;/ ..��1� ,� ,Ll✓1-�1�- FQOt r,v�p_ �V1 Sip `� �2e'�i�T � w4 u_: Gv,.vDow 31,LL'CAAV& Ls.v1) S Drtw�f ✓✓ i/c(vf����' lull � 12805 S.W. 68th Terrace. Miami, Florida 33183 (305) 386-7276 E-F-PARTMENT 8 U I L D 'i Of 2. ivi i Ev I aw comm. rzrjT SHF- 111- DATE.- N A IM E: -1 ADDRESS: A M", f U v VKt 6 P t4 O�Z 1ZL I f L J"Ie &xr- 41 .flc oj6- tq.) N'O-L' PRIO-FLSSIONALL ENGINEER OR ARCHI-TCT WILL HE REQUIRED TC -"R%7 ,NoT INCLUDED IN T13f PLAN EXAMRINERS IF C%)RRLCnoN N S\F UR SECOND REVIEW.