Loading...
05-1298(2)-001r V 05 qf FORM 60OA-2001 _P FLORIDA ENERGY EFFICIENCY CODE FOR BUILDING CONSTRUCTION Florida Department of Community Affairs Residential Whole Building Performance Method A Project Name PINO RES. Builder Address 6864 SW 68 Th. ST. Permitting Office DADE 1 City, State MIAMI, FL 33155- Permit Number Owner Mr. & Mrs. Pino Jurisdiction Number 232400 Climate Zone- South 1. New construction or existing 2 Single family or multi -family 3 Number of units, if multi -family 4. Number of Bedrooms 5. Is this a worst case? 6. Conditioned floor area (W) 7. Glass area & type a. Clear glass, default U-factor b Default tint c. Labeled U or SHGC 8 Floor types a. Slab -On -Grade Edge Insulation b Raised Wood, Adjacent c. N/A 9. Wall types a. Concrete, Int Insul, Exterior b. Concrete, Int Insul, Adjacent c. N/A d N/A e. N/A 10. Ceiling types a. Under Attic b. N%A c. N/A 11. Ducts a. Sup: Unc. Ret Con. AH: Interior b 2 Others Single Pane 1450.6 ft' 0.0 ft' 00ft, New Multi -family _ 1 _ 5 _ No _ 6800 ft' Double Pane _ 0.0 ft' 0 0 W 00ft' R=0 0, 462.0(p) ft _ ft' 12. Cooling systems a Central Unit b Central Unit c 2 Others 13 Heating systems a Electric Strip b Electric Strip c. 2 Others Cap. 59.0 kBtu/hr SEER. 12 00 _ Cap: 49.0 kBtu/hr _ SEER. 12 00 _ Cap: 58 8 kBtu/hr Cap: 34 0 kBtu/hr COP. 1.00 _ Cap: 34 0 kBtu/hr _ COP. 100 _ Cap 51.0 kBtu/hr _ _ 14. Hot water systems R=4.1, 6560 0 ft' _ a Electric Resistance Cap: 80.0 gallons _ R=4.1, 304.0 ft' _ EF•0 87 _ _ b 2 Others Cap. 83 0 gallons c. Conservation credits _ (HR-Heat recovery, Solar R=30 0, 4210 0 ft' _ DHP-Dedicated heat pump) _ 15. HVAC credits PT, CF, _ (CF-Ceiling fan, CV -Cross ventilation, _ HF-Whole house fan, Sup. R=6.0, 45.0 ft' _ PT -Programmable Thermostat, 63 0 ft MZ-C-Multizone cooling, MZ-H-Multizone heating) Glass/Floor Area: 0.21 Total as -built points: 92413 PASS Total base points: 95828 I hereby certify that the plans and specifications covered by this calculation are in compliance with the Florida Energy Code. , . c u 01 f" y, PREPARED BY: DATE: 1 I hereby certify that uildin , 4134�5�in�Z1i 1 compliance with t Aiii En er *Oder ; a: OWNER/AG '� '• E o `� DATE: Review of the plans and specifications covered by this calculation indicates compliance with the Florida Energy Code Before construction is completed this building will be inspected for compliance with Section 553 908 Florida Statutes BUILDING OFFICIAL: DATE: 0 EnergyGaugee (Version: FLRCPB v3.30) FORM 60OA-2001 SUMMER CALCULATIONS Residential Whole Building Performance Method A - Details I ADDRESS. 6864 SW 68 Th. ST., MIAMI, FL, 33155- PERMIT # I BASE I AS -BUILT GLASS TYPES 18 X Conditioned X BSPM = Points Floor Area 18 6800.0 32.50 39780.0 Type/SC Overhang Ornt Len Hgt Area X SPM X SOF = Points Single, Clear E 35 45 80 7871 060 3769 Single, Clear E 00 00 1600 7871 1 00 125939 Single, Clear E 00 00 80 7871 100 6297 Single, Clear E 00 00 320 7871 1 00 25188 Single, Clear E 00 00 240 7871 100 18891 Single, Clear E 00 00 60 7871 1 00 4723 Single, Clear E 00 00 11 3 7871 1 00 8921 Single, Clear E 00 00 120 7871 1 00 9445 Single, Clear S 00 00 80 6693 1 00 5354 Single, Clear S 00 00 587 6693 1 00 3926.3 Single, Clear S 00 00 880 6693 1 00 58895 Single, Clear S 70 100 1600 6693 058 62616 Single, Clear S 40 90 240 6693 071 11369 Single, Clear S 00 00 167 6693 1 00 11154 Single, Clear S 00 00 200 6693 1 00 13385 Single, Clear S 00 00 240 6693 1 00 16062 Single, Clear W 00 00 11 3 7053 1 00 7993 Single, Clear W 00 00 1133 7053 1 00 79930 Single, Clear W 00 00 240 7053 100 16926 Single, Clear W 00 00 667 7053 100 4701 8 Single, Clear W 00 00 640 7053 1 00 45137 Single, Clear N 00 00 160 3646 1 00 5834 Single, Clear N 00 00 230 3646 1 00 8386 Single, Clear N 00 00 100 3646 1 00 3646 Single, Clear N 00 00 221 3646 1 00 8052 Single, Clear N 00 00 189 3646 1 00 6887 Single, Clear N 00 00 200 3646 1 00 7292 Single, Clear N 00 00 167 3646 1 00 6077 Single, Clear N 00 00 1600 3646 1 00 58340 Single, Clear N 00 00 120 3646 1 00 4375 Single, Clear N 00 00 140 3646 1 00 5105 Single, Clear N 00 00 30 3646 1 00 1094 Single, Clear N 00 00 450 3646 1 00 16408 Single, Clear N 160 100 400 3646 066 9582 Single, Clear N 160 100 480 3646 066 11499 Single, Clear S 00 00 320 6693 1 00 21416 Single, Clear W 00 00 300 7053 1 00 21158 As -Built Total: 1460.6 81343.0 • EnergyGauge® DCA Form 60OA-2001 EnergyGauge®/FlaRES'2001 FLRCPB v3 30 FORM 60OA-2001 J 1 SUMMER CALCULATIONS Residential Whole Building Performance Method A - Details ADDRESS. 6864 SW 68 Th. ST., MIAMI, FL, 33155- PERMIT # BASE AS -BUILT WALL TYPES Area X BSPM = Points Type R-Value Area X SPM = Points Adjacent 3040 1 00 3040 Concrete, Int Insul, Exterior 41 65600 232 151864 Exterior 6560.0 270 177120 Concrete, Int Insul, Adjacent 41 3040 1 19 3618 Base Total: 6864.0 18016.0 As -Built Total: 6864.0 16648.2 DOOR TYPES Area X BSPM = Points Type Area X SPM = Points Adjacent 200 260 520 Adjacent Insulated 200 260 520 Exterior 640 640 4096 Exterior Wood 320 940 3008 Exterior Wood 320 940 3008 Base Total: 84.0 461.6 As -Built Total: 84.0 663.6 CEILING TYPES Area X BSPM = Points Type R-Value Area X SPM X SCM = Points Under Attic 42100 280 117880 Under Attic 300 42100 2 77 X 1 00 11661 7 Base Total: 4210.0 11788.0 As -Built Total: 4210.0 11661.7 FLOOR TYPES Area X BSPM = Points Type R-Value Area X SPM = Points Slab 462 0(p) -20 0 -9240 0 Slab -On -Grade Edge Insulation 0 0 462 0(p -20 00 -9240 0 Raised- 3000 -2 16 -648 0 Raised Wood, Adjacent 190 3000 060 1800 Base Total: -9888.0 As -Built Total: 762.0 -9060.0 INFILTRATION Area X BSPM = Points Area X SPM = Points - 68000 1879 127772.0 68000 1879 1277720 Summer Base Points: 187929.6 Summer As -Built Points: 227918.4 'Total Summer X System = Cooling Total X Cap X Duct X System X Credit = Cooling Points Multiplier Points Component Ratio Multiplier Multiplier Multiplier Points (DM x DSM x AHU) 2279184 0 354 (1 067 x 1 165 x 0 90) 0 284 0 902 228834 2279184 0 252 (1 067 x 1 165 x 0 90) 0 278 0 902 159574 2279184 0 294 (1 067 x 1 165 x 0 90) 0 284 0 902 190049 2279184 0 101(1 00 x 1 165 x 1 00 0 344 0 902 78981 187929.6 0.4266 80170.8 227918.4 1.00 1.107 0.289 0.902 66743.8 EnergyGaugeTM DCA Form 60OA-2001 EnergyGauge®/FlaRES'2001 FLRCPB v3 30 FORM 60OA-2001 WINTER CALCULATIONS Residential Whole Building Performance Method A - Details ADDRESS- 6864 SW 68 Th. ST., MIAMI, FL, 33155- PERMIT #. BASE I AS -BUILT GLASS TYPES 18 X Conditioned X BWPM = Points Floor Area 18 6800.0 2.36 2888.6 Type/SC Overhang Ornt Len Hgt Area X WPM X WOF = Point Single, Clear E 35 45 80 477 1 08 41 3 Single, Clear E 00 00 1600 477 1 00 7634 Single, Clear E 00 00 80 477 1 00 382 Single, Clear E 00 00 320 477 1 00 1527 Single, Clear E 00 00 240 477 1 00 1145 Single, Clear E 00 00 60 477 1 00 286 Single, Clear E 00 00 11 3 477 1 00 541 Single, Clear E 00 00 120 477 1 00 573 Single, Clear S 00 00 80 449 1 00 360 Single, Clear S 00 00 587 449 1 00 2637 Single, Clear S 00 00 880 449 1 00 3955 Single, Clear S 70 100 1600 449 1.23 8864 Single, Clear S 40 90 240 449 1 10 1189 Single, Clear S 00 00 167 449 1 00 749 Single, Clear S 00 00 200 449 1 00 899 Single, Clear S 00 00 240 449 1 00 1079 Single, Clear W 00 00 11 3 549 1 00 622 Single, Clear W 00 00 1133 549 1 00 6224 Single, Clear W 00 00 240 549 1.00 131 8 Single, Clear W 00 00 667 549 1 00 3661 Single, Clear W 00 00 640 549 100 351 5 Single, Clear N 00 00 160 603 1 00 965 Single, Clear N 00 00 230 603 1 00 1387 Single, Clear N 00 00 100 603 1 00 603 Single, Clear N 00 00 221 603 1 00 1332 Single, Clear N 00 00 189 603 1 00 1139 Single, Clear N 00 00 200 603 1 00 1207 Single, Clear N 00 00 167 603 1 00 1005 Single, Clear N 00 00 1600 603 1 00 9652 Single, Clear N 00 00 120 603 1 00 724 Single, Clear N 00 00 140 603 1 00 845 Single, Clear N 00 00 30 603 1 00 181 Single, Clear N 00 00 450 603 1 00 271 5 Single, Clear N 160 100 400 603 096 2309 Single, Clear N 160 100 480 603 096 277.1 Single, Clear S 00 00 320 449 100 1438 Single, Clear W 00 00 300 549 100 1648 As -Built Total: 1450.6 EnergyGauge® DCA Form 60OA-2001 EnergyGauge®/FlaRES'2001 FLRCPB v3 30 FORM 60OA-2001 • WINTER CALCULATIONS Residential Whole Building Performance Method A - Details ADDRESS 6864 SW 68 Th. ST., MIAMI, FL, 33155- PERMIT # BASE AS -BUILT WALL TYPES Area X BWPM = Points Type R-Value Area X WPM = Points Adjacent 3040 050 1520 Concrete, Int Insul, Exterior 41 65600 103 67896 Exterior 65600 060 39360 Concrete, Int Insul, Adjacent 41 3040 045 1353 Base Total: 6864.0 4088.0 As -Built Total: 6864.0 6924.9 DOOR TYPES Area X BWPM = Points Type Area X WPM = Points Adjacent 200 1 30 260 Adjacent Insulated 200 1 30 260 Exterior 640 1 80 1152 Exterior Wood 320 280 896 Exterior Wood 320 280 896 Base Total: 84.0 141.2 As -Built Total: 84.0 205.2 CEILING TYPES Area X BWPM = Points Type R-Value Area X WPM X WCM = Points Under Attic 42100 010 421 0 Under Attic 300 42100 0 10 X 1 00 421 0 Base Total: 4210.0 421.0 As -Built Total: 4210.0 421.0 FLOOR TYPES Area X BWPM = Points Type R-Value Area X WPM = Points Slab 462 0(p) -2 1 -970 2 Slab -On -Grade Edge Insulation 0 0 462 0(p -2 10 -970 2 Raised- 3000 -0 28 -84 0 Raised Wood, Adjacent 190 3000 030 900 Base Total: -1054.2 As -Built Total: 762.0 -880.2 INFILTRATION Area X BWPM = Points Area X WPM = Points - 68000 -0 06 -408 0 68000 -0 06 -408 0 Winter Base Points: 6076.6 Winter As -Built Points: 14012.2 Total Winter X System = Heating Total X Cap X Duct X System X Credit = Heating Points Multiplier Points Component Ratio Multiplier Multiplier Multiplier Points (DM x DSM x AHU) 140122 0 286 (1 085 x 1 137 x 0 91) 1 000 0 950 42030 140122 0 286 (1 085 x 1 137 x 0 91) 1 000 0 950 42030 14012 2 0 286 (1 085 x 1 137 x 0 91) 1 000 0 950 42030 140122 0 143(1 00 x 1 137 x 1 00) 1 000 0 950 2101 5 6076.6 0.6274 3812.5 14012.2 1.00 1.105 1.000 0.950 14710.7 EnergyGauge' DCA Form 60OA-2001 EnergyGauge®/FlaRES'2001 FLRCPB v3 30 I FORM 60OA-2001 WATER HEATING & CODE COMPLIANCE STATUS Residential Whole Building Performance Method A - Details ADDRESS- 6864 SW 68 Th. ST., MIAMI, FL, 33166- PERMIT # BASE AS -BUILT WATER HEATING Number of X Multiplier = Total Tank EF Number of X Tank X Multiplier X Credit = Total Bedrooms Volume Bedrooms Ratio Multiplier 5 236900 118450 800 087 5 049 239623 1 00 58803 800 087 5 049 239623 1 00 58803 30 097 5 002 214920 1 00 1978 As -Built Total: 11958.4 CODE COMPLIANCE STATUS BASE AS -BUILT Cooling + Heating + Points Points Hot Water Points = Total Points Cooling Points + Heating + Hot Water = Total Points Points Points 80171 3812 11845 95828 65744 14711 11958 92413 PASS EnergyGauge`4 DCA Form 60OA-2001 EnergyGauge®/FlaRES'2001 FLRCPB v3 30 i FORM 60OA-2001 Code Compliance Checklist Residential Whole Building Performance Method A - Details ADDRESS. 6864 SW 68 Th. ST., MIAMI,,FL, 33155- PERMIT # 6A-21 INFILTRATION REDUCTION COMPLIANCE CHECKLIST COMPONENTS SECTION REQUIREMENTS FOR EACH PRACTICE CHE K Exterior Windows & Doors 606 1 ABC 1 1 Maximum 3 cfm/s ft window area 5 cfm/s ft door area Exterior & Adjacent Walls 606 1 ABC 1 2 1 Caulk, gasket, weatherstrip or seal between windows/doors & frames, surrounding wall, foundation &wall sole or sill plate, joints between exterior wall panels at corners, utility penetrations, between wall panels &top/bottom plates, between walls and floor / ✓ EXCEPTION Frame walls where a continuous infiltration barrier is installed that extends from and is sealed to the foundation to the top plate Floors 606 1 ABC 1 2 2 Penetrations/openings >1/8" sealed unless backed by truss orjoint members / EXCEPTION Frame floors where a continuous infiltration barrier is installed that is sealed to the perimeter, penetrations and seams Ceilings _ 606 1 ABC 1 2 3 Between walls & ceilings, penetrations of ceding plane of top floor, around shafts, chases, soffits, chimneys, cabinets sealed to continuous air barner, gaps in gyp board & top plate, / attic access EXCEPTION Frame ceilings where a continuous infiltration barrier is installed that is sealed at the perimeter, at penetrations and seams Recessed Lighting Fixtures 606 1 ABC 1 2 4, Type IC rated with no penetrations, sealed, or Type IC or non -IC rated, installed inside a / sealed box with 1/2" clearance & 3" from insulation, or Type IC rated with < 2 0 cfm from conditioned space, tested Multi -story Houses 606 1 ABC 1 2 5 Air barrier on perimeter of floor cavity between floors It Additional Infiltration reqts 606 1 ABC 1 3 Exhaust fans vented to outdoors, dampers, combustion space heaters comply with NFPA, have combustion air RA-22 OT14FR PRFCCRIPTIVF MFASI IRFS /muct ha mat nr eYceadad by all racidanr_ac_I COMPONENTS SECTION REQUIREMENTS CHECK Water Heaters 6121 Comply with efficiency requirements in Table 6-12 Switch or clearly marked circuit V breaker electric or cutoff as must be provided External or built-in heat trap required Swimming Pools & Spas 6121 Spas & heated pools must have covers (except solar heated) Non-commercial pools must have a pump timer Gas spa & pool heaters must have a minimum thermal 1 p efficiency of 78% Shower heads 6121 Water flow must be restricted to no more than 2 5 gallons per minute at 80 PSIG Air Distribution Systems 6101 All ducts, fittings, mechanical equipment and plenum chambers shall be mechanically J attached, sealed, insulated, and installed in accordance with the criteria of Section 610 Ducts in unconditioned attics R-6 min insulation HVAC Controls 6071 Separate readily accessible manual or automatic thermostat for each system Insulation 604 1, 602 1 Ceilings -Min R-19 Common walls -Frame R-11 or CBS R-3 both sides Common ceding & floors R-11 EnergyGauge' DCA Form 60OA-2001 EnergyGauge®/FlaRES'2001 FLRCPB v3 30 ENERGY PERFORMANCE LEVEL (EPL) DISPLAY CARD ESTIMATED ENERGY PERFORMANCE SCORE* = 84.3 _ The higher the score, the more efficient the home. Mr & Mrs. Pino, 6864 SW 68 Th ST., MIAMI, FL, 33155- 1. New construction or existing New _ 12. Cooling systems 2. Single family or multi -family Multi -family _ a Central Unit Cap: 59.0 kBtu/hr 3. Number of units, if multi -family 1 _ SEER 12.00 4. Number of Bedrooms 5 _ b Central Unit Cap. 49.0 kBtu/hr _ 5 Is this a worst case? No _ SEER- 12.00 _ 6. Conditioned floor area ff) 6800 ft' c 2 Others Cap: 58 8 kBtu/hr 7. Glass area & type Single Pane Double Pane a. Clear - single pane 1450.6 ft' 0.0 ft' _ 13. Heating systems b. Clear - double pane 0.0 ft' 0.0 ft' _ a. Electric Strip Cap. 34.0 kBtu/hr _ c. Tint/other SHGC - single pane 0.0 W 0.0 ft' _ COP. 100 _ d. Tint%other SHGC - double pane b Electric Strip Cap: 34.0 kBtu/hr _ 8 Floor types _ COP: 1.00 _ a. Slab -On -Grade Edge Insulation R=0.0, 462.0(p) ft _ c 2 Others Cap- 51.0 kBtu/hr b. Raised Wood, Adjacent R=19.0, 300.0ft' c N/A 14. Hot water systems 9. Wall types _ a Electric Resistance Cap. 80 0 gallons _ _ a Concrete, Int Insul, Exterior R=4.1, 6560.0 ft' _ EF•0.87 b Concrete, Int Insul, Adjacent R=4.1, 304.0 ft' _ b 2 Others Cap: 83.0 gallons _ c N/A d. N/A _ c. Conservation credits _ e. N/A (HR-Heat recovery, Solar 10. Ceiling types _ DHP-Dedicated heat pump) a. Under Attic R=30 0, 4210 0 ft2 _ 15. HVAC credits PT, CF, b. N/A _ (CF-Ceiling fan, CV -Cross ventilation, c. N/A HF-Whole house fan, 11 Ducts _ PT -Programmable Thermostat, a. Sup. Unc. Ret: Con AH• Interior Sup R=6.0, 45.0 ft' _ MZ-C-Multizone cooling, b. 2 Others 63.0 ft MZ-H-Multizone heating) I certify that this home has complied with the Florida Energy Efficiency Code For Building Construction through the above energy saving features which will be installed (or exceeded) in this home before final inspection. Otherwise, a new EPL Display Card will be completed based on installed Code compliant features. Builder Signature: ` Address of New Home: Date: City/FL Zip: *NOTE: The home's estimated energy performance score is only available through the FLARES computer program. This is not a Building Energy Rating. If your score is 80 or greater (or 86 for a US EPADOE EnergyStar7 designation), your home may quay for energy efficiency mortgage (EE11V incentives if you obtain a Florida Energy Gauge Rating. Contact the Energy Gauge Hotline at 3211638-1492 or see the Energy Gauge web site at www fsec. ucf edu for information and a list of certified Raters. For information about Florida's Energy Efficiency Code For Building Construction, ` contact the Department of Community Affai?5QAr8YU1*W ersion: FLRCPB v3.30) d Summary Energy Code Results Residential Whole Building Performance Method A Mr. & Mrs Pmo Project Title: Code Only 6864 SW 68 Th ST PINO RES Professional Version MIAMI, FL 33155- Climate South 6/1 /2005 Building Loads Base As -Built Summer: 1.8793E5 poi iSummer: 227918 points Winter: 6077 points Winter: 14012 points Hot Water: 10424 points Hot Water: 10424 points Total: 204430 pointsi Total: 252354 points Energy Use Base As -Built Cooling: 80171 points Cooling: 65744 points Heating: 3812 points Heating: 14711 points Hot Water: 11845 points Hot Water: 11958 points Total: 95828 points Total: 92413 points PASS e-Ratio: 0.96 EnergyGaugeO(Version FLRCPB v3.30) System Sizing Calculations - Winter Residential Load - Component Details Mr & Mrs Pino Project Title Code Only 6864 SW 68 Th ST. PINO RES Professional Version MIAMI, FL 33155- Climate South Reference City Miami (Defaults) Winter Temperature Difference 230 F 6/1/2005 Window Panes/SHGC/Frame/U Orientation Area X HTM= Load 1 1, Clear, Metal, 1.00 E 8.0 230 184 Btuh 2 1, Clear, Metal, 1 00 E 160.0 230 3680 Btuh 3 1, Clear, Metal, 1 00 E 80 230 184 Btuh 4 1, Clear, Metal, 1.00 E 320 23.0 736 Btuh 5 1, Clear, Metal, 1 00 E 240 23.0 552 Btuh 6 1, Clear, Metal, 1 00 E 60 23.0 138 Btuh 7 1, Clear, Metal, 1 00 E 11 3 230 261 Btuh 8 1, Clear, Metal, 1.00 E 120 230 276 Btuh 9 1, Clear, Metal, 1.00 S 80 23.0 184 Btuh 10 1, Clear, Metal, 1 00 S 58.7 230 1349 Btuh 11 1, Clear, Metal, 1 00 S 88.0 230 2024 Btuh 12 1, Clear, Metal, 1.00 S 160.0 230 3680 Btuh 13 1, Clear, Metal, 1.00 S 240 230 552 Btuh 14 1, Clear, Metal, 1.00 S 167 230 383 Btuh 15 1, Clear, Metal, 1.00 S 200 230 460 Btuh 16 1, Clear, Metal, 1.00 S 240 23.0 552 Btuh 17 1, Clear, Metal, 1 00 W 11 3 23.0 261 Btuh 18 1, Clear, Metal, 1.00 W 1133 230 2607 Btuh 19 1, Clear, Metal, 1.00 W 24.0 230 552 Btuh 20 1, Clear, Metal, 1.00 W 667 230 1533 Btuh 21 1, Clear, Metal, 1.00 W 64.0 230 1472 Btuh 22 1, Clear, Metal, 1 00 N 16.0 23.0 368 Btuh - 23 1, Clear, Metal, 1.00 N 230 230 529 Btuh 24 1, Clear, Metal, 1.00 N 100 230 230 Btuh 25 1, Clear, Metal, 1 00 N 221 230 508 Btuh - 26 1, Clear, Metal, 1 00 N 18.9 23.0 434 Btuh 27 1, Clear, Metal, 1 00 N 200 23.0 460 Btuh 28 1, Clear, Metal, 1 00 N 167 23.0 383 Btuh 29 1, Clear, Metal, 1 00 N 1600 230 3680 Btuh 30 1, Clear, Metal, 1 00 N 120 23.0 276 Btuh 31 1, Clear, Metal, 1 00 N 140 230 322 Btuh 32 1, Clear, Metal, 1 00 N 30 230 69 Btuh 33 1, Clear, Metal, 1.00 N 45.0 230 1035 Btuh 34 1, Clear, Metal, 1.00 N 400 230 920 Btuh 35 1, Clear, Metal, 1 00 N 480 23.0 1104 Btuh 36 1, Clear, Metal, 1.00 S 320 23.0 736 Btuh 37 1, Clear, Metal, 1.00 W 30.0 230 690 Btuh Window Total 1451 33365 Btuh Walls Type R-Value Area X HTM= Load 1 Concrete - Exterior 41 6560 48 31488 Btuh 2 Concrete - Adjacent 41 304 4 2 1277 Btuh Wall Total 6864 32765 Btuh EnergyGauge® FLRCPB v3 30 Manual J Winter Calculations Residential Load - Component Details (continued) Mr. & Mrs. Pino Project Title Code Only 6864 SW 68 Th. ST. PINO RES Professional Version MIAMI, FL 33155- Climate South 6/1 /2005 Doors Type Area X HTM= Load 1 Insulated - Adjac 20 94 188 Btuh 2 Wood - Exter 32 10.6 339 Btuh 3 Wood - Exter 32 106 339 Btuh Door Total 84 8656tuh Ceilings Type R-Value Area X HTM= Load 1 Under Attic 300 4210 0.8 3368 Btuh Ceiling Total 4210 33686tuh Floors Type R-Value Size X HTM= Load 1 Slab -On -Grade Edge Insul 0 462 0 ft(p) 186 8593 Btuh 2 Raised Wood/Enclosed 19 300.0 sqft 06 180 Btuh Floor Total 762 8773 Btuh Infiltration Type ACH X Building Volume CFM= Load Natural 040 68000(sgft) 454 11492 Btuh Mechanical 150 3795 Btuh Infiltration Total 604 15287 Btuh Subtotal 94423 Btuh Totals for Heating Duct Loss(using duct multiplier of 0.00) 0 Btuh Total Btuh Loss 94423 Btuh Key- Window types (SHGC - Shading coefficient of glass as SHGC numerical value or as clear or tint) (Frame types - metal, wood or insulated metal) (U - Window U-Factor or'DEF' for default) (HTM - ManualJ Heat Transfer Multiplier) Key Floor size (penmeter(p) for slab -on -grade or area for all other floor types ) EnergyGauge® FLRCPB v3 30 System Sizing Calculations - Summer Residential Load - Component Details Mr & Mrs. Pino Project Title Code Only 6864 SW 68 Th ST, PINO RES Professional Version MIAMI, FL 33155- Reference City Miami (Defaults) Summer Temperature Difference 15 0 F Climate* South 6/1 /2005 Window Type Panes/SHGC/U/InSh/ExSh Omt Overhang Len H t Window Area(sqft) Gross Shaded Unshaded HTM Shaded Unshaded Load 1 1, Clear, 1 00, N, N E 3 5 4 5 80 48 32 27 85 401 Btuh 2 1, Clear, 100, N, N E 0 0 1600 00 1600 27 85 13600 Btuh 3 1, Clear, 100, N, N E 0 0 80 00 8 0 27 85 680 Btuh 4 1, Clear, 100, N, N E 0 0 32.0 00 32 0 27 85 2720 Btuh 5 1, Clear, 100, N, N E 0 0 240 00 240 27 85 2040 Btuh 6 1, Clear, 1 00, N, N E 0 0 60 00 6 0 27 85 510 Btuh 7 1, Clear, 1 00, N, N E 0 0 11 3 00 11 3 27 85 963 Btuh 8- 1, Clear, 1 00, N. N E 0 0 12 0 00 120 27 85 1020 Btuh 9 1, Clear, 1 00, N. N S 0 0 80 00 8 0 27 44 352 Btuh 10 1, Clear, 100, N, N S 0 0 587 0 0 587 27 44 2581 Btuh 11- 1, Clear, 100, N, N S 0 0 880 00 88 0 27 44 3872 Btuh 12 1, Clear, 100, N, N S 7 10 1600 32 0 1280 27 44 6496 Btuh 13 1, Clear, 1 00. N, N S 4 9 24 0 24 0 00 27 44 648 Btuh 14 1, Clear, 1 00. N, N S 0 0 16 7 00 167 27 44 733 Btuh 15 1, Clear, 100, N. N S 0 0 20 0 00 200 27 44 880 Btuh 16 1, Clear, 100, N, N S 0 0 240 00 24 0 27 44 1056 Btuh 17 1, Clear, 100, N. N W 0 0 11 3 00 11 3 27 85 963 Btuh 18 1, Clear, 1 00, N, N W 0 0 1133 00 1133 27 85 9633 Btuh 19 1, Clear, 100, N, N W 0 0 24 0 00 240 27 85 2040 Btuh 20 1, Clear, 1 00, N. N W 0 0 66.7 00 667 27 85 5667 Btuh 21 1, Clear, 1 00, N. N W 0 0 64 0 00 64 0 27 85 5440 Btuh _ 22 1, Clear, 100, N. N N 0 0 16 0 00 160 27 27 432 Btuh 23 1, Clear, 100, N, N N 0 0 230 00 230 27 27 621 Btuh 24 1, Clear, 100, N, N N 0 0 100 00 100 27 27 270 Btuh _ 25 1, Clear, 100, N, N N 0 0 221 00 221 27 27 596 Btuh 26 1, Clear, 1 00, N, N N 0 0 189 00 189 27 27 510 Btuh 27 1, Clear, 1 00, N. N N 0 0 200 00 200 27 27 540 Btuh 28 1, Clear, 100, N, N N 0 0 16 7 00 167 27 27 450 Btuh 29 1, Clear, 100, N, N N 0 0 1600 00 1600 27 27 4320 Btuh 30 1, Clear, 100, N, N N 0 0 12 0 00 120 27 27 324 Btuh 31 1, Clear, 1 00, N, N N 0 0 14 0 00 140 27 27 378 Btuh 32 1, Clear, 1 00, N, N N 0 0 30 00 3 0 27 27 81 Btuh 33 1, Clear, 1 00, N, N N 0 0 45.0 00 450 27 27 1215 Btuh 34 1, Clear, 1 00, N, N N 16 10 400 0 0 400 27 27 1080 Btuh 35 1, Clear, 1 00, N, N N 16 10 48 0 00 48 0 27 27 1296 Btuh 36 1, Clear, 100. N. N S 0 0 32 0 00 320 27 44 1408 Btuh 37 1, Clear, 1 00, N. N W 0 0 300 0 0 300 27 85 2550 Btuh Window Total 1 1 1451 1 78368 Btuh Walls Type R-Value Area HTM Load 1 Concrete - Extenor 4 1 65600 32 21044 Btuh 2 Concrete - Adjacent 41 3040 1 6 482 Btuh Wall Total 68640 21527 Btuh EnergyGauge® FLRCPB v3 30 0 Manual J Summer Calculations Residential Load - Component Details (continued) Mr. 8 Mrs. Pino Project Title* Code Only 6864 SW 68 Th ST PINO RES. Professional Version MIAMI, FL 33155- Climate South 6/1 /2005 Doors Type Area HTM Load 1 Insulated - Adtac 200 106 212 Btuh 2 Wood - Exter 320 104 333 Btuh 3 Wood - Exter 320 104 333 Btuh Door Total 840 878 Btuh Ceilings Type/Color R-Value Area HTM Load 1 Under Attic/Light 300 42100 1 2 5052 Btuh - Ceiling Total 4210.0 5052 Btuh Floors Type R-Value Size HTM Load 1 Slab -On -Grade Edge Insulation 00 462 0 ft(p) 00 0 Btuh 2' Raised Wood 190 300 0 sgft 00 0 Btuh Floor Total 7620 0 Btuh Infiltration Type ACH Volume CFM= Load Natural 035 68000 3975 6558 Btuh Mechanical 150 2475 Btuh Infiltration Total 547 9033 Btuh Internal Occupants Btuh/occupant Appliance Load gain 10 X 300 + 1200 1 4200 Btuh Subtotal 119057 Btuh Duct gain(using duct multiplier of 0.00) 0 Btuh Total sensible gain 119057 Btuh Totals for Cooling Latent infiltration gain (for 56 gr. humidity difference) 20847 Btuh Latent occupant gain (10 people @ 230 Btuh per person 2300 Btuh Latent other gain 1 0 Btuh Key Window types (SHGC - Shading coefficient of glass as SHGC numerical value or as clear or tint) (U - Window U-Factor or'DEF' for default) (Irish - Interior shading device none(N), Blinds/Dapenes(B) or Roller Shades(R)) (ExSh - Exterior shading device none(N) or numencal value) (Ornt - compass orientation) EnergyGauge® FLRCPB v3 30 Residential System Sizing Calculation AP7 mary Mr. $ Mrs Pino ct Title Code Only 6864 SW 68 Th ST RES Professional Version MIAMI, FL 33155- a Climate- South •tea �.�� Location for weather data Miamq� a;�2Tmp'Range(L) Humiditydata Interior RH 5 ttr weF.Humiddifference 56 r.ut o Winter design temperature �� 47,{� ' tv •Summer dejign temperature 90 F Winter setpoint _ e, F�' Summer'4etpomt 75 F Winter temperature etc =' 23° F Sumner tem erature difference 15 F Total heating loaaafAiain ./ 944 Btuh T` a I cooling load calculation 142204 Btuh Submitted hea capacitX � %Dof calc,.�ur, ,Submitted cooling capacity % of calc Btuh Total (Electric St ¢� o�12fi� )�5�00 Sensible (SHR = 0 73) 1023 12176 Latent 1946 45036 �� Total 1173 16680 INTER CALCULATIONS Winter Heating Laad for 6800 s �Om Load component Load inld pa, Window total 1451 sqft 33365 Btuh Wall total 6864 sqft 32765 Btuh Doors('%) Door total 84 sqft 865 Btuh floors(9%) Ceiling total 4210 sqft 3368 Btuh • Floor total See detail report 8773 Btuh Infiltration 604 cfm 15287 Btuh Subtotal 94423 Btuh Duct loss 0 Btuh TOTAL HEAT LOSS 1 94423 Btuh SUMMER CALCULATIONS _ Summer Cnnhnn I nntl (fnr ARM cnffl Load component Load Window total 1451 sqft 78368 Btuh Wall total 6864 sqft 21527 Btuh Door total 84 sqft 878 Btuh Ceiling total 4210 sqft 5052 Btuh Floor total 0 Btuh Infiltration 547 cfm 9033 Btuh Internal gain 4200 Btuh Subtotal(sensible) 119057 Btuh Duct gain 0 Btuh Total sensible gain 119057 Btuh Latent gain(infiltration) 20847 Btuh Latent gain(internal) 2300 Btuh Total latent gain 23147 Btuh TOTAL HEAT GAIN 142204 Btuh Latent i ternaK2%) Latent in/d.(1 5%) Wt Oatrt(3%) Inldle%) EnergyGauge® PREPARED BY DATE %ndows(35%) gs(a%) r, W" ` ) CE r Z'38 u m;Wlgq ba�gpd on A6VA,M,K_ual J EnergyGauge® FLRCPB v3 30 0 Iwo 08/19/2885 91:32 3056664591 PAGE al Y..cR Ittb.t ,r- 1 I►Isela. `. t tool CHT OFSOUMJKUW SPECfAL EMPECTOR FORM r (We) hm bemrem by 4e. pi �jb • m pohm we" in�pecoar smmu cadet to Fhmda Cob R &e pcW an die below bftd (tletrj. I m a �Ied erd�ct ar pa9oi �ce�e� m die PROCESS MME " �;ffv Fill NOW 0*dtv &am 4ppot S 04 mdmftA Out a Spea h9amn kwgm1.. = dm 5� f �6 Sad smart 1Q a mmmka mspadiepoCWK as umimd by Se Fhdb Buift l�li man y � be � hr cap at 4 Siam r--fPew by GbWtF. �e C7aoaty MW ' by dbr Q� d�'ob Jb►l�ie ► °e°�am�F�db'►�01d� t�� D� p'� � ---- of me m& Bm3ft Few* I N ahma avo- d� 8a7dimS � Abe ti� �� tlbe q g i�epecsioe ftm and a imW OOMW b#cftg dK to ON bW dbelkf ad m dxm modem ama• cftm ft mWWftgcG&zud c L~A Mdh+ees 41 &44a1f5 .. •A%M, *- .� Phone Na. (3os) ff4 • o125 MR & MRS. PING RESIDENCE i -6864 SW 68TH STREET MIAMI, FLORIDA -331 SS STRUCTURAL CALCULATIONS Francisco Cuello, P.E., Inc. Consulting Engineers 147 ALHAMBRA CIRCLE, SUITE 220 CORAL GABLES, FL 33134 305.567.0125 PE No. 40087 f` R . 'k tar WIND LOAD ANALYSIS (ASCE 7-98) /a' • Project PINO RESIDENCE Building Characteristics HIGH ROOF (GUEST ROOK h = 22.50 ft Engineer E FEBLES L = 16.33 ft (Short) Printed on 6114105 • B= 28.67 ft (Long) h/L = 1.38 (To det. Cp, ASCE 7-98, Fig 2, page 42 Roof Press ) L/B= 0.57 (To det. Co, ASCE 7-98, Fig 2, page 42 Wall Press ) ■ z = 13.50 ft zmin = 15 ft (Terrain Exposure Constants, ASCE 7-98 TABLE 6 4, page 59) C = 0.20 ft (Terrain Exposure Constants, ASCE 7-98 TABLE 6.4, page 59) = 500 ft (Terrain Exposure Constants, ASCE 7-98 TABLE 6.4, page 59) E = 020 ft (Terrain Exposure Constants, ASCE 7-98 TABLE 6 4, page 59) Design Criteria ASCE 7-98 Category I I (ASCE 7-98, TABLE 1-1) Exposure C (ASCE 7-98, 6.56.1) V = 146 mph (ASCE 7-98, Fig. 6-1) 1 = 1.00 (Importance Factor, ASCE 7-98 TABLE 6.1, page 55) Kz = 0.92 (Velocity Pressure Exposure Coefficient, also Kh. ASCE 7-98TABLE 6.5, page 60 based on z) Kd = 1.00 (Wind Directionahty Factor, ASCE 7-98 TABLE 6 6, page 61, based on structure type) Velocity Pressure qz = 0.00256 Kz Kd V2 1 [Ibs/ft2] (Eq. 6-13) (NOTE, section 6 5 7 of ASCE 7-98 does not apply (I e., Kr=1.0)) % = 50.20 PSF Determination of wind pressure (p) (ASCE 7-98. 6.5.12.2, Main Force Resisting System) p=q*G*Cp gh(GCp,) [Ib/ft2] (Eq. 6-15) (ASCE 7-98, 6 5 12 2.1, Rigid building of all heights) Gust Effect Factor (ASCE 7-98, 6.5 8, Rigid Structures) Iz = 0.228 (Eq. 6-3) Lz = 427.06 (Eq. 6-5) Q = 0.93 (Eq. 6-4) Therefore: G = 0.89 (ASCE 7-98, 6.5.8.1, (Eq.6-2)) And, GCp,+ = 0.18 (Internal Pressure Coefficient, TABLE 6 7, page 62) Enier o for open bldgs 0 55 for partially enclosed bldgs or o 18for enclosed bldgs Gip,_ = -0.18 (lntemal Pressure Coefficient, TABLE 6.7, page 62) Walls (UB) = 0 57 WINDWARD Cp = 08 (Fig 6-3, page 42) p+ = 26.56 psf p_ = 44.63 psf LEEWARD Cp = -0.5 (Fig 6-3. page 42) p+ _ -31.28 psf p_ _ -13.21 psf From next page Net Uplift -39.08 psf (Interior) -65.64 psf (Overhang) SIDE Cp = -0.7 (Fig 6-3, page 42) p+ _ -40.18 psf p_ _ -22.11 psf AS COMPONENTS & CLADDING (max) P=F x qz with A= 174.00 ft2 F(-) zone 5 = -1.142 P= -57.32 psf FRANCISCO CUELLO JR PE CONSULTING ENGINEERS - 147 ALHAMBRA CIRCLE -SUITE 220 -CORAL GABLES - FL 33134 - 305 567 0125 - 305 567 0129 (FAX) WIND LOAD ANALYSIS (ASCE 7-98) 2 Determination of wind pressure (continuation) Roof Normal to Ridge WINDWARD Cp = -0.9 (Fig. 6-3, page 42) P. _ -49.08 psf p_ _ -31.01 psf LEEWARD Cp = -0.6 (Fig 6-3, page 42) p+ _ -35.73 psf p_ _ -17.66 psf Parallel to Ridge NJIzU1TU-1 N I Cp = -0 9 (Fig 6-3, page 42) P+ _ -49.08 psf p_ _ -31.01 psf LEEWARD Cp = -0.9 (Fig. 6-3, page 42) p+ _ -49.08 psf p_ _ -31.01 psf h/L = 1.38 0 - 18.430 At overhangs (if there are no overhangs, ignore this section) Overhangs -0.8 Cp = -0.9 p = -75.64 psf Net Uplift -39.08 psf (Interior) -65.64 psf (Overhang) Check Block -Diaphragm (applicable to wood roofs only) FI Height 10 ft (from F1g1BM/T-BM to BM/r-BM above) Long Direction Linear Shear = 289.19 Ibs/ft Reaction @ ends = 4145.60 Ibs Design Diaphragm = 253.86 Ibs/ft Provide Block Diaphragm of: Short Direction Linear Shear = 289.19 Ibs/ft Reaction @ ends = 2361.27 Ibs Design Diaphragm = 82.36 Ibs/ft Project: PINO RESIDENCE HIGH ROOF (GUEST ROON Engineer E FEBLES >215 Ibs/ft, BLOCK DIAPHRAGM REQUIRED (FBC 2001, Table 2310.2A, 10d NAILS, Other Cases) 2.19 ft each side, long direction. BLOCK DIAPHRAGM NOT REQUIRED (FBC 2001, Table 2310.2A, 10d NAILS, Other Cases) Printed on &14105 FRANCISCO CUELLO JR P E CONSULTING ENGINEERS - 147 ALHAMBRA CIRCLE - SUITE 220 - CORAL GABLES - FL 33134 - 305 567 0125 - 305 567 0129 (FAX) 3 WIND LOAD ANALYSIS (ASCE 7-98) Components & Claddin From wind analysis: qZ = Determine a: a = 1.633 ft or but not less that 06532 ft or Use a = 3 ft Windows and Doors Pressure Project: PINO RESIDENCE HIGH ROOF (GUEST ROON Engineer E FEBLES 50.20 PSF 9 ft (whichever is smaller) 1 633 controls 3 ft 3 controls EXPOSURECATEGORY Special cases for negative pressure (zone 4 & zone 5 combined) WINDOW/ Special cases for negative pressure (zone 4 & zone 5 combined) WINDOW/ TOT AREA PRESSURE PARTIAL DIMENSIONS PART AREA AVE P,a, DOOR ID c� sf aft h ft c> sf Printed on 6114105 FRANCISCO CUELLO JR P E CONSULTING ENGINEERS - 147 ALHAMBRA CIRCLE - SUITE 220 - CORAL GABLES - FL 33134 - 305 567 0125 - 305 567 0129 (FAX) WIND LOAD ANALYSIS (ASCE 7-98) 4 • Project PINO RESIDENCE Building Characteristics HIGH ROOF (NORTH BLDG h = 22.83 ft Engineer E FEBLES - L = 49.50 ft (Short) Printed on 6114105 B= 68.50 ft (Long) h/L = 0.46 (To det. Cp, ASCE 7-98, Fig 2, page 42 Roof Press ) L/B= 0.72 (To det Cp, ASCE 7-98, Fig 2, page 42 Wall Press.) z = 13.70 ft zmin = 15 ft (Terrain Exposure Constants, ASCE 7-98 TABLE 6.4, page 59) C = 0.20 ft (Terrain Exposure Constants, ASCE 7-98 TABLE 6.4, page 59) 1 = 500 ft (Terrain Exposure Constants, ASCE 7-98 TABLE 6.4, page 59) E = 0.20 ft (Terrain Exposure Constants, ASCE 7-98 TABLE 6 4, page 59) Design Criteria ASCE 7-98 Category I I (ASCE 7-98, TABLE 1-1) Exposure C (ASCE 7-98, 6 5.6.1) V = 146 mph (ASCE 7-98. Fig. 6-1) I = 1.00 (Importance Factor, ASCE 7-98 TABLE 6.1, page 55) Kz = 0.92 (Velocity Pressure Exposure Coefficient, also Kh. ASCE 7-98 TABLE 6.5, page 60 based on z) Kd = 1.00 (Wind Directionality Factor, ASCE 7-98 TABLE 6 6, page 61, based on structure type) Velocity Pressure qz = 0.00256 Kz Kd V2 1 [Ibs/ft2] (Eq. 6-13) (NOTE section 6.5.7 of ASCE 7-98 does not apply (i.e., Kzt=1 0)) qz = 50.20 PSF Determination of wind pressure (p) (ASCE 7-98, 6 512.2, Main Force Resisting System) p=q*G*Cp gh(GCp,) [Ib/ft2] (Eq. 6-15) (ASCE 7-98, 6 5 12 2 1, Rigid building of all heights) Gust Effect Factor (ASCE 7-98, 6.5 8, Rigid Structures) Iz = 0.228 (Eq. 6-3) Lz = 427.06 (Eq. 6-5) Q = 0.90 (Eq. 6-4) Therefore. G = 0.87 (ASCE 7-98, 6.5 8.1, (Eq 6-2)) And, Gip,+ = 0.18 (Intemal Pressure Coefficient, TABLE 6 7, page 62) Enter 0 for open Wags 0 55 for partially enclosed bldgs or 0 18 for enclosed bldgs GcPF = -0.18 (Internal Pressure Coefficient, TABLE 6.7, page 62) Walls (uB) = 0 72 WINDWARD Cp = 0.8 (Fig 6-3, page 42) p+ = 25.97 psf P. = 44.05 psf LEEWARD Cp = -0.5 (Fig 6-3, page 42) p+ _ -30 92 psf p. _ -12.84 psf From next page [,Net Uplift -38.42 psf (Interior) -64.39 psf (Overhang) SIDE Cp = -0.7 (Fig 6-3, page 42) p+ _ -39.67 psf p- _ -21.60 psf AS COMPONENTS & CLADDING (max) P=F x qz with A= 174.00 ft2 F(-) zone 5 = -1 142 P= -57.32 psf FRANCISCO CUELLO JR P E CONSULTING ENGINEERS - 147 ALHAMBRA CIRCLE - SUITE 220 - CORAL GABLES - FL 33134 - 305 567 0125 - 305 567 0129 (FAX) WIND LOAD ANALYSIS (ASCE 7-98) 5 - Determination of wind pressure (continuation) Roof Normal to Ridge ' WINDWARD Cp = -0.9 (Fig 6-3, page 42) p+ _ -48.42 psf p- _ -30.35 psf LEEWARD Cp = -0.6 (Fig 6-3, page 42) p+ _ -35.29 psf P. _ -17.22 psf Parallel to Ridae Cp = -0.9 JFlg 6-3, page 42) p+ _ -48.42 psf p_ _ -30.35 psf LEEWARD Cp = -0.9 (Fig. 6-3, page 42) p+ _ -48.42 psf p_ _ -30.35 psf h/L = 0.46 0 - 18.430 At overhangs (d there are no overhangs, ignore this section) Overhangs -0.8 Cp = -0.9 p = -74.39 psf Net Uplift -38.42 psf (Interior) -64.39 psf (Overhang) Check Block -Diaphragm (applicable to wood roofs only) FI Height 10 ft (fromFtg-IBM/T-BM toBWr-BM above) Long Direction Project: PINO RESIDENCE HIGH ROOF (NORTH BLDG Engineer E FEBLES Linear Shear = 284.44 Ibs/ft Reaction @ ends = 9742.20 Ibs Design Diaphragm = 196.81 Ibs/ft BLOCK DIAPHRAGM NOT REQUIRED (FBC 2001, Table 2310.2A, 10d NAILS, Other Cases) Short Direction Linear Shear = 284.44 Ibs/ft Reaction @ ends = 7039.98 Ibs Design Diaphragm = 102.77 Ibs/ft BLOCK DIAPHRAGM NOT REQUIRED (FBC 2001, Table 2310.2A, 10d NAILS, Other Cases) Printed on 6114105 FRANCISCO CUELLO JR P E CONSULTING ENGINEERS - 147 ALHAMBRA CIRCLE - SUITE 220 - CORAL GABLES - FL 33134 - 305 567 0125 - 305 567 0129 (FAX) WIND LOAD ANALYSIS (ASCE 7-98) 0 Components 8. Cladding From wind analysis: qZ = Determine a: a = 4.95 ft or but not less that 1.98 ft or Use a = 4.95 ft Windows and Doors Pressure 50.20 PSF 9.132 ft (whichever is smaller) 3ft Project: PINO RESIDENCE HIGH ROOF (NORTH BLDG Engineer E FEBLES 4.95 controls 3 controls q= = 50.20 PSF EXPOSURE C CATEGORY II P= Fxq (psf) WINDOW/ SIZE (aprox.) AREA F(-) F(-) F(+) P. P. P. DOOR ID w (ft) h (ft) (SF) ZONE 4 ZONE 5 ZONE 4 &5 ZONE 4 (-)1 ZONE 5 () ZONE 4 & 5 A 5.67 10.00 56.70 -1.147 -1.314 1.047 -57.58 -65.96 52.56 B 3.25 5.00 16.25 -1.243 -1.506 1.143 -62.39 -75.58 57.37 C 3.25 _ 8.00 26.00 -1.207 -1.433 1.107 -60.58 -71.96 55.56 D 2.67 7.67 20.48 -1.225 -1.470 1.125 -61.50 -73.80 56.48 E 1.77 1.77 3.13 -1.280 -1.580 1.180 -64.26 -79.32 59.24 F 4.00 8.00 32.00 -1.191 -1.402 1.091 -59.78 -70.36 54.76 G 3.33 5.83 19.41 -1.229 -1.478 1.129 -61.71 -74.21 56.69 H 2.67 5.35 14.28 -1.253 -1.525 1.153 -62.89 -76.58 57.87 J 2.00 3.83 7.66 -1.280 -1.580 1.180 -64.26 -79.32 59.24 K 2.20 5.60 12.32 -1.264 -1.548 1.164 -63.46 -77.71 58.44 L 1.33 3.83 5.09 -1.280 -1.580 1.180 -64.26 -79.32 59.24 M 2.20 5.60 12.32 -1.264 -1.548 1.164 -63.46 -77.71 58.44 N 3.33 5.00 16.65 -1.241 -1.502 1.141 -62.30 -75.40 57.28 O 2.20 7.00 15.40 -1.247 -1.514 1.147 -62.60 1 -76.00 57.58 P 3.00 5.00 15.00 -1.249 -1.518 1.149 -62.70 -76.20 57.68 Q 2.67 5.00 13.35 -1.258 -1.536 1.158 -63.15 -77.10 58.13 1 2.67 4.67 12.47 -1.263 -1.546 1.163 -63.41 -77.62 58.39 R 2.00 3.00 6.00 -1.280 -1.580 1.180 -64.26 -79.32 59.24 GARAGE 8.00 8.00 64.00 -1.138 -1.295 1.038 -57.11 -65.03 52.09 BALC DO 3.00 7.70 23.10 -1.216 -1.452 1.116 -61.04 -72.87 56.02 STAIR DO 2.33 8.00 18.64 -1.232 -1.484 1.132 -61.86 -74.53 56.84 2 4.33 8.00 34.64 -1.185 -1.389 1.085 -59.48 -69.75 54.46 1 6.00 8.00 48.00 -1.160 -1.339 1.060 -58.22 -67.24 53.20 5 3.00 8.00 24.00 -1.213 -1.446 1.113 -60.89 -72.58 55.87 Special cases for negative pressure (zone 4 & zone 5 combined) TOT AREA PRESSURE PAaRTf'ItAL DIMENSI PART AREA11 AVE.SP rwG, DOOR D/ I ftNS IL I I I Pnnted on 6114105 FRANCISCO CUELLO JR P E CONSULTING ENGINEERS - 147 ALHAMBRA CIRCLE - SUITE 220 - CORAL GABLES - FL 33134 - 305 567 0125 - 305 567 0129 (FAX) WIND LOAD ANALYSIS (ASCE 7-98) 7 Project PING RESIDENCE Building Characteristics LOW ROOF h = 12.00 ft Engineer E FEBLES L = 96.00 ft (Short) Printed on 6114105 _ B= 121.00 ft (Long) h/L = 0.13 (To det Cp, ASCE 7-98, Fig 2, page 42 Roof Press ) L/B= 0.79 (To det Cp, ASCE 7-98, Fig 2, page 42 Wall Press ) z = 7.20 ft Zrnln = 15 ft (Terrain Exposure Constants, ASCE 7-98 TABLE 6 4, page 59) C = 0.20 ft (Terrain Exposure Constants, ASCE 7-98 TABLE 6.4, page 59) = 500 ft (Terrain Exposure Constants, ASCE 7-98 TABLE 6.4, page 59) E = 0.20 ft (Terrain Exposure Constants, ASCE 7-98 TABLE 6 4, page 59) Design Criteria ASCE 7-98 Category 11 (ASCE 7-98, TABLE 1-1) Exposure C (ASCE 7-98, 6 5.6.1) V = 146 mph (ASCE 7-98, Fig. 6-1) 1 = 1.00 (Importance Factor, ASCE 7-98 TABLE 6.1, page 55) Kz = 0.85 (Velocity Pressure Exposure Coefficient, also Kh. ASCE 7-98 TABLE 6 5, page 60 based on z) Kd = 1.00 (Wind Dtrectionahty Factor, ASCE 7-98 TABLE 6.6, page 61, based on structure type) Velocity Pressure qz = 0.00256 Kz Kd V2 1 [Ibs/ft2] (Eq. 6-13) (NOTE: section 6 5 7 of ASCE 7-98 does not apply (i.e , Kr=1 0)) qz = 46.38 PSF Determination of wind pressure (p) (ASCE 7-98, 6 5.12 2, Main Force Resisting System) p=q*G*Cp gh(GCp1) [Ib/ft2] (Eq 6-15) (ASCE 7-98, 6 5.12 2 1, Rigid building of all heights) Gust Effect Factor (ASCE 7-98, 6.5.8, Rigid Structures) Iz = 0.228 (Eq. 6-3) Lz = 427.06 (Eq. 6-5) Q = 0.88 (Eq. 6-4) Therefore: G = 0.86 (ASCE 7-98, 6.5 8.1, (Eq 6-2)) And, Gip,+ - 0.18 (Internal Pressure Coefficient, TABLE 6.7, page 62) Enter 0 for open bldgs 055 (or partially enclosed bldgs or 0 18 for enclosed bldgs Gcpl. = -0.18 (Internal Pressure Coefficient, TABLE 6.7, page 62) Walls (UB) = 0 79 WINDWARD Cp = 0.8 (Fig 6-3, page 42) p+ = 23.56 psf P. = 4026 psf LEEWARD Cp = -0.5 (Fig 6-3, page 42) p+ _ -28.29 psf P. _ -11.59 psf From next page Net Uplift -34.25 psf (Interior) -57.81 psf (Overhang) SIDE Cp = -0.7 (Fig. 6-3, page 42) p+ _ -36.27 psf P. _ -19.57 psf AS COMPONENTS & CLADDING (max) P=F x qz with A= 174.00 ft2 F(-) zone 5 = -1.142 P= -52.96 psf FRANCISCO CUELLO JR P E CONSULTING ENGINEERS - 147 ALHAMBRA CIRCLE - SUITE 220 - CORAL GABLES - FL 33134 - 305 567 0125 - 305 567 0129 (FAX) WIND LOAD ANALYSIS (ASCE 7-98) Project: PINO RESIDENCE LOW ROOF Engineer E FEBLES Determination of wind pressure (continuation) Roof Normal to Ridge ' WINDWARD Cp = -0 9 (Fig 6-3, page 42) p+ _ -44.25 psf p_ _ -27.55 psf LEEWARD Cp = -0 6 (Fig 6-3, page 42) p+ _ -32.28 psf p_ _ -15.58 psf Parallel to Ridae NJIZI5P.7cl:ib Cp = -0.9 JFig 6-3, page 42) p+ _ -44.25 psf p_ _ -27.55 psf LEEWARD Cp = -0.9 (Fig 6-3, page 42) p+ _ -44.25 psf p_ _ -27.55 psf h/L = 0.13 (� a 18.430 At overhangs (d there are no overhangs, ignore this section) Overhangs -0.8 Cp = -0.9 p = -67.81 psf Net Uplift -34.25 psf (Interior) -57.81 psf (Overhang) Check Block -Diaphragm (applicable to wood roofs only) FI Height 10 ft (fromFtg.1BM/T-BM toBM/T-BM above) Long Direction Linear Shear = 259.27 Ibs/ft Reaction @ ends = 15685.94 Ibs Design Diaphragm = 163.40 Ibs/ft BLOCK DIAPHRAGM NOT REQUIRED (FBC 2001, Table 2310.2A, 10d NAILS, Other Cases) Short Direction Linear Shear = 259.27 Ibs/ft Reaction @ ends = 12445.04 Ibs Design Diaphragm = 102.85 Ibs/ft BLOCK DIAPHRAGM NOT REQUIRED (FBC 2001, Table 2310.2A, 10d NAILS, Other Cases) Printed on 6114105 FRANCISCO CUELLO JR P E CONSULTING ENGINEERS - 147 ALHAMBRA CIRCLE - SUITE 220 - CORAL GABLES - FL 33134 - 305 567 0125. 305 567 0129 (FAX) M WIND LOAD ANALYSIS (ASCE 7-98) Components & Claddin From wind analysis: qZ = Determine a: a = 9.6 ft or but not less that 3.84 ft or Use a = 4.8 ft Windows and Doors Pressure Project: PINO RESIDENCE LOW ROOF Engineer E FEBLES 46.38 PSF 4.8 ft (whichever Is smaller) 4.8 controls 3 ft 3.84 controls EXPOSURECATEGORY Special cases for negative pressure (zone 4 & zone 5 combined) WINDOW/ Special cases for negative pressure (zone 4 & zone 5 combined) WINDOW/ TOT AREA PRESSURE PARTIAL DIMENSIONS PART AREA AVE P tom, DODR ID c� (sf) afth ft c> sf Printed on 6114105 FRANCISCO CUELLO JR P E CONSULTING ENGINEERS - 147 ALHAMBRA CIRCLE - SUITE 220 - CORAL GABLES . FL 33134 - 305 567 01125 - 305 567 01129 (FAX) FRANCISCO CUELLO JR.,P.E.,INC. JOB Consulting Engineer SHEET NO OF CALCULATED BY �' DATE - ` - 65 SCALE :1� TorA h = 2t2 P8' �5= 4.q6 AI � - I Q9 a ( ?onP CODE G 4 (?o no } t r f ; = s � ✓",r:2 rl�•?Nf� � ?c,f��J J' = I J�• Z U l�f ,� �•�) 1���� � Cod .+,• - in NFUCUST' M •pnnuny urv¢e t tu'c „N, r i ,' lYLs7 n;_ ,. _ n „y, 11,1 .i, G 1�r77 •.9 FRANCISCO CUELLO JR.,P.E.,INC. Consulting Engineer JOB / A00 /�P51C1Pa?�� SHEET NO OF r CALCULATED BY L DATE SCALE A= s s s� �� y � •�P 141 _ / 07 9/ � 3 (/i'GDr) l �' L �• 5 L s' 2 2 SSA /u I. j �) C��c yr �� . �(��� x• (�� � � � J(. 5�a q'' 2q-� /V If2 - � 9. 8�- f1-1, x F 4 1/ „,, NEDS CUST° M' prinfing sviv,ce :Nftda :n, tN 1,Hc,s,r,• r „ 0, , „ HU Q, i,17;b;r:y 12 FRANCISCO CUELLO JR.,P.E.,INC. Consulting Engineer h - Ja' JOB SHEET NO OF CALCULATED BY Xr r DATE SCALE I'M A�-9)7, 0n - /�: /05 f51 ?one z 46 '�-ep) (9 r - •ty, i ,,-. NIBS CU5T'e M prinbng svi vice . vry BPll .3', tvf -h ,. i4•, n;r. vai 'otopp,p ­ t ,-„ nit yn C 6R6,716 15 FRANCISCO CLIELLO JR.,P.E.,INC. JOB Consulting Engineer SHEET NO OF CALCULATED BY DATE SCALE fi n' 26, 63` 4 4.5 8 roo�I _ /6 - P):x- v Li 8� 15.33� j&U s x /D.5 I = 126�d�1�L (l�ll ui2�' flurvfz�P� l5 U,,,Yl x X 1 5 _ 400 { l �,, L,onc po ,4>1 20 6 72667 I a' oil elo 1�60 f- = g619 { o� ,3-3 r DL = 10 0 LL= 3.69 I�Z �5i v = 2 2 S ID c s3-5. I S U/x f�4- ( cl 3UP�J x I — 4 I_--- 2-757 1 �i� 1rF1 n 'Ve .+i m f -, NE HS CUSTA M priounq sovice , 10L ho. r .. NLJti P.M PJ,_r, 44 FRANCISCO CUELLO JR.,P.E.,INC. Consulting Engineer / Dt W is p R = 13. 76 y ( Dt) 2.�'6 Y r�L) 8 ,x al 2 /,7 o � 2 i's in'erp-). / JOB SHEET NO — CALCULATED BY SCALE OF — DATE ecric i 2 l 4' = 124 147 s� �Y ,13- 4 8).5 143 2 f 400 �0 21� s4 3. �416 * - )v Ll -�07"j x u5 11 2 5 3 ,t ov+, 1 4— WH$ CUS v M priming %Frvir[ FIN" utlP i,'. Nf 9; : f'o.vn,G.o uih tM 0 i IL4, ". , ,_ ,,,, , , H 11 Tln h .4'1"k;, q, 15 FRANCISCO CUELLO JR.,P.E.,INC. JOB Poo 1�ioaJon(P Consulting Engineer SHEET NO OF CALCULATED BY C� DATE SCALE �G� = 762, �a 10 x 92.5 t 1a 225 775 71 09 t 5-98 225 r till, I- L a5so y s� ��' x 40 5 pan. 2 3.3 «< 2.2 Y 3o s X 3. 7 e��s x �f. 2 0 q t 'S() x 5 x(3 12 v � kj s J ,,—*',- r:,NEBSCUSP`M priming%efwe .Pqu,,m z" N1HS1.-LP�•10*110)'dI0ar,;. "",,":"n , RWH.,G 14't1(at:to FRANCISCO CUELLO JR.,P.E.,INC. JOB )o Consulting Engineer SHEET NO OF CALCULATED BY DATE SCALE � I � OL 14 Lc gU�s� �aa' _ o / Alf � 107 �l 7 q 0 4)51 2 2 5 j i-� �b ); I 6 19 17 ¢ ,� / Z� y 160Y 6y6 ., . .,. 1 NLBS CUST" M pnnlmg a rv-CQ I WY "80, ". , NLP, i- h11014',' —A oqn" n 9w tm G 1aZ1YL'tq �7 FRANCISCO CUELLO JR.,P.E.,INC. Consulting Engineer JOB SHEET NO OF CALCULATED BY DATE SCALE / a- P3- /m Ot. 269 Lc 6,1 k toot) F1 = 68 (L)L Yoof ) 6 - tt A = 90 (DL wood ` J 0 c 4-301---4 x 15/J : 2 7-5%� �Gff�slll� v s s /a = 'ol � b6 2 L1- 90 f -�75'4 5`�3�l 4O/Dgj, Y 4. s/� - q x 2 4�5 j Y 2 15 ✓ 2 3 1Y afpl & 10" `�c "j., I ,.,NEMGUST'M'pnnnng%etvcCe ;Wqua4wi,', Nib'. L.nL'W'[+ 11^ Rol FRANCISCO CUELLO JR.,P.E.,INC. Consulting Engineer JOB 1p,n0 a VG.joncP SHEET NO OF 7 CALCULATED BY DATE (D — r —y 5 SCALE / -ii 70D5� X �� — 1144 6)' d00) JAI X °'a2 _ q nt /.�3 PGl.,;� X 9.� = 73 q a)� T ro (i 246 d 90fro x � = 4�y . �z ?tlf yY ¢4 7 a. (�wc 1������ 3 8 53 5 @ a� %crt4 p p 9 V. lg - lz c / ,�- O,DC! x�. _ c17 h� 2 13— I ) - 'o I2141 �jxX l/vN /' x 13-�' = 2 a 0 Gras x 4.) 5 B. / O G 7-5_ --/ :� 1141 L-L �U ��, x U • Sly _ * 6G.,r1� ��n� 1754 ... ,,ue�' •"m NEBS CUST`, M penny %e ace We" i.c P, � n,, ,.,i„fn .af C,t r„f a .,, qn.r, n, n 1, No 6 FRANCISCO CUELLO JR.,P.E.,INC. Consulting Engineer G cx 1 iG �ru +Yt- dJGCX� 0611 1':') I JOB SHEET NO OF CALCULATED BY DATE a SCALE Dc �,� x �S%a - 4 s 8 aJf2 Is%a - 22 �p,� x �J,z x I�� = R TE) Aa �z►1 LL ' 3G ! = 225 dJ� �t �•1, ,NEB5 OUST^M prmling wivice 7 Nr N, h. o, a„mu,d,: �i Pt�•t ,',pn ��,. n, RNf r.,,G ,,14,171R 20 MR. & MRS. PINO RESIDENCE Title: Job # Dsgnr: Date: 12.39PM, 4 JUN 05 Description Scope: User KW-0606224,Ver580.1-Dec-2003 Concrete Rectangular & Tee Beam Design Page 1 (c)1983.2003 ENERCALC Engineering Software espinosa ecw Calculations Description 1 B-1 General Information Code Ref: ACI 318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Span 23.33 ft Pc 3,000 psi Depth 24 000 in Fy 60,000 psi Width 12.000 in Concrete Wt. 145.0pcf Seismic Zone 0 End Fixity Pinned -Pinned Beam Weight Added Internally Live Load acts with Short Term Reinforcing Rebar @ Center of Beam... Rebar @ Left End of Beam... Rebar @ Right End of Beam... Count Size V from Top Count Size V from Top Count Size V from Top #1 3 8 2.40in #1 3 8 2 40 in #1 3 8 2.40 in #2 3 8 21.60 in #2 3 8 21.60 in #2 3 8 21.60 in #3 3 8 19.60in #3 3 8 19.60 in #3 3 8 19.60 in Load Factoring Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design. Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C 2 Uniform Loads Dead Load Live Load Short Term Start End #1 0.909 k 0 517 k k 0.000 ft 8.000 ft #2 2.067 k 0.580 k k 8.000 ft 23 330 ft Concentrated Loads Dead Load Live Load Short Term Location #1 13.670 k 3.630 k Span = 23.33ft, Width= 12.00in Depth = 24.00in Maximum Moment: Mu 369.81 k-ft Allowable Moment: Mn'phi 384 90 k-ft Maximum Shear: Vu 50.63 k Allowable Shear Vn'phi 69.01 k Shear Stirrups... Stirrup Area @ Section 0 220 in2 Region 0 000 3 888 7 777 Max. Spacing 5.400 10 800 10.800 Max Vu 50.634 45.383 35 359 ACI Factors (per ACI 318-02, applied intemally to entered loads) k 8.000 ft Maximum Deflection Max Reaction @ Left Max Reaction @ Right ACI C-1 & C-2 DL 1.400 ACI C-2 Group Factor ACI C-1 & C-2 LL 1 700 ACI C-3 Dead Load Factor ACI C-1 & C-2 ST 1 700 ACI C-3 Short Term Factor seismic = ST1 100 Beam Design OK -0 7972 in 37.53 k 38.52 k 11.665 15.553 19.442 23 330 ft 10.800 10.800 10.800 5.400 in 22 706 22.706 39.504 48.303 k 0.750 Add"I "1.4" Factor for Seismic 1.400 0.900 Add"l "0 9" Factor for Seismic 0 900 1.300 MR. & MRS. PINO RESIDENCE Title : Dsgnr: Description 21 Job # Date: 12 3913M, 4 JUN 05 Scope : user KW-0606224,Ver580, 1-Dec-2oo3 Multi -Span Concrete Beam Page 1 019932003 ENERCALC Engineering Software espinosa ecw Calculations Description 1 B-2 General Information Code Ref: ACI 318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Fy 60,000.0 psi Spans Considered Continuous Over Supports ACI Dead Load Factor 1.40 Pc 3,000.0 psi Stirrup Fy 40,000 0 psi ACI Live Load Factor 1.70 Concrete Member Information Description LEFT RIGHT Span ft 12.75 11.00 Beam Width in 12.00 12.00 Beam Depth in 18.00 18.00 End Fixity Pin -Pin Pin -Pin Reinforcing Center Area 180in2 1.80in2 Bar Depth 15.30in 15.30in Left Area 1.80in2 1.80in2 Bar Depth 2.30in 2.30in Right Area 180in2 1.80in2 Bar Depth 2.30in 2.30in Loads Using Live Load This Span ?? Yes Yes Dead Load k/ft 2.757 2.757 Live Load k/ft 0.758 0.758 Dead Load k/ft 0 133 0.133 Live Load k/ft Start ft 0 000 0.000 End ft 12 750 11.000 Point #1 DL k 13.780 LL k 2.680 @ X ft 0.000 8.000 Results Beam OK Beam OK Mmax @ Cntr k-ft 60.04 85.78 @ X = ft 4.76 7.99 Mn ' Phi k-ft 109.61 109.61 Max @ Left End k-ft 0.00 -110.90 Mn ' Phi k-ft 11285 11285 Max @ Right End k-ft -110.90 0.00 Mn ' Phi k-ft 11285 112.85 Bending OK Bending OK Shear @ Left k 25.31 45.93 Shear @ Right k 4271 36.60 Reactions 8 Deflections DL @ Left k 13.67 48.34 LL @ Left k 3.63 1232 Total @ Left k 17.30 60.67 DL @ Right k 48.34 20.40 LL @ Right k 1232 473 Total @ Right k 60.67 25.13 Max. Deflection in -0 119 -0 114 @ X = ft 5.35 660 Inertia • Effective in4 2,35634 2,35634 MR. & MRS. PINO RESIDENCE Title: Dsgnr: Description Scope Fev 580000 ser KW-0606224,Ver580.1-DK.20o3 (u�1983.2003 ENERCALC Engineering Software Multi -Span Concrete Beam Description 1 B-2 Shear Stirrups 0.220 0.220 Stirrup Rebar Area In2 Spacing @ Left In 7.85 3.93 Spacing @ .2'L In 7.85 7.05 Spacing @ .4'L In Not Req'd 785 Spacing @ .6'L in 7.85 7.85 Spacing @ .8'L In 7.85 7.85 Spacing @ Right in 3.93 7.85 Query Values Location ft 0.00 0.00 Moment k-ft 0.0 -110.9 Shear k 25.3 45.9 Deflection In 00000 0.0000 �z Job # Date: 12.39PM, 4 JUN 05 Page 2 ecwCalculaUons MR. $ MRS. PINO RESIDENCE Title: Job # Dsgnr: Date: 12.40PM, 4 JUN 05 Description Scope : Kev seo00e Pa e 1 user KW-0606224.Ver580.1-Dec-2003 Concrete Rectangular & Tee Beam Design 9 (c)1983-2003 ENERCALC Engineenng Software espinosa em-Calculations Description 1 B-3 General Information Code Ref: ACI 318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Span 15.00 ft rc 3,000 psi Depth 18.000 in Fy 60,000 psi Width 8.000 in Concrete Wt 145 0 pcf Seismic Zone 0 End Fixity Pinned -Pinned Beam Weight Added Internally Live Load acts with Short Term Reinforcing Rebar @ Center of Beam... Rebar @ Left End of Beam... Rebar @ Right End of Beam... Count Size V from Top Count Size V from Top Count Size V from Top #1 2 7 2.30in #1 2 7 2.30 in #1 2 7 2.30 in #2 2 7 15.70 in #2 2 7 15.70 in #2 2 7 15.70 in #3 2 5 9 00in #3 2 5 9.00 in #3 2 5 9.00 in Load Factori Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C.2 Uniform Loads Dead Load Live Load Short Term Start End #1 1.709 k 0.357 k k 0 000 ft 15.000 ft Span = 15.00ft, Width= 8.00in Depth = 18 00in Maximum Moment. Mu 90.07 k-ft Allowable Moment • Mn'phi 94 24 k-ft Maximum Shear Vu 19.98 k Allowable Shear: Vn'phi 34.13 k Shear Stirrups... Stirrup Area @ Section 0 220 in2 Region 0 000 2 500 5 000 Max. Spacing 7.850 7.850 7.850 Max Vu 19 984 16.141 8.070 ACI Factors (per ACI 318-02, applied internally to entered loads) Maximum Deflection Max Reaction @ Left Max Reaction @ Right ACI C-1 & C-2 DL 1.400 ACI C-2 Group Factor ACI C-1 & C-2 LL 1 700 ACI C-3 Dead Load Factor ACI C-1 & C-2 ST 1 700 ACI C-3 Short Term Factor . .seismic = ST * . 1 100 Beam Design OK -0 4459 in 16.58 k 16 58 k 7.500 10.000 12.500 15 000 It 7.850 7.850 7 850 7 850 in 7.878 7.878 15 948 19 791 k 0.750 Add"I "1.4" Factor for Seismic 1 400 0.900 Add"I "0.9" Factor for Seismic 0.900 1 300 MR. & MRS. PINO RESIDENCE Title: Dsgnr: Description 24 Job # Date: 12 40PM, 4 JUN 05 Scope: Uev tl W tl Page 1 User KW-0606224,Ver580.1-Dec-2003 Concrete Rectangular & Tee Beam Design (c)19S3-2003 ENERCALC Engineenng Software espinosa ecwCalculahans Description 1 B-4 General Information Code Ref: ACI 318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 1 Span 31.50 ft Fc 3,000 psi Depth 24.000 in Fy 60,000 psi Width 8.000 in Concrete Wt. 145.0 pcf Seismic Zone 0 End Fixity Pinned -Pinned Beam Weight Added Intemally Live Load acts with Short Term Reinforcing Rebar @ Center of Beam... Rebar @ Left End of Beam... Rebar @ Right End of Beam... Count Size 'd' from Top Count Size 'd' from Top Count Size 'd' from Top #1 2 7 2.30in #1 2 7 2.30 in #1 2 7 2.30 in #2 2 7 21 70 in #2 2 7 21 70 in #2 2 7 21.70 in #3 2 5 8.80in #3 2 in #3 2 5 8.80 in #4 2 5 15 30in #4 2 in #4 2 5 15 30 in Load Factori Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design. Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C.2 Uniform Loads Dead Load Live Load Short Term Start End #1 0 400 k 0 253 k k 0 000 ft 31.500 ft Span = 31.50ft, Width= 8 00in Depth = 24 00in Maximum Moment: Mu 156.37 k-ft Allowable Moment: Mn'phi 159.58 k-ft Maximum Shear: Vu 17.63 k Allowable Shear: Vn•phi 38.60 k Shear Stirrups... Stirrup Area @ Section 0.220 in2 Region 0 000 5.250 Max. Spacing 10.850 10.850 Max Vu 17.633 13.344 Beam Design OK Maximum Deflection -1 4793 in Max Reaction @ Left 13.33 k Max Reaction @ Right 13 33 k 10 500 15.750 21.000 26.250 31 500 ft Not Req'd Not Req'd Not Req'd 10.850 10.850 in 6.672 6 513 6.513 13.185 17.474 k ACI Factors (per ACI 318-02, applied intemally to entered loads) ACI C-1 & C-2 DL 1 400 ACI C-2 Group Factor 0.750 Add"I "1 4" Factor for Seismic 1 400 ACI C-1 & C-2 LL 1.700 ACI C-3 Dead Load Factor 0.900 Add"I "0 9" Factor for Seismic 0 900 ACI C-1 & C-2 ST 1.700 ACI C-3 Short Term Factor 1.300 ..seismic = ST ' . 1 100 25 MR. & MRS. PING RESIDENCE Title: Job # Dsgnr: Date: 12 40PM, 4 JUN 05 Description Scope: nev aesuuuKW-060o User 6224. Ver 5 8 0. 1 -Dec-2003 Concrete Rectangular & Tee Beam Design Page 1 (01983-2003 ENERCALC Engineenng Software espinow em Calculations Description 1 B-5 General Information Code Ref: ACI 318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Span 8.20 It fc 3,000 psi Depth 20 000 in Fy 60,000 psi Width 8.000 in Concrete Wt. 145.0 pcf Seismic Zone 0 End Fixity Pinned -Pinned Beam Weight Added Internally Live Load acts with Short Term Reinforcing Rebar @ Center of Beam... Rebar @ Left End of Beam... Rebar @ Right End of Beam... Count Size V from Top Count Size V from Top Count Size V from Top #1 2 6 2 20in #1 2 6 2.20 in #1 2 6 2.20 in #2 2 6 17.80 in #2 2 6 17.80 in #2 2 6 17 80 in Load Factorina Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design. Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C.2 Uniform Loads Dead Load Live Load Short Term Start End #1 2.775 k 1.912 k k 2 250 ft 5.950 It #2 1.001 k 0 890 k k 0.000 ft 2.250 It #3 1.001 k 0 890 k k 5 950 ft 8 200 ft Span = 8.20ft, Width= 8 00in Depth = 20 00in Maximum Moment. Mu 51.18 k-ft Allowable Moment Mn'phi 65.54 k-ft Maximum Shear: Vu 16 05 k Allowable Shear: Vn'phi 35 70 k Shear Stirrups... Stirrup Area @ Section 0.220 in2 Region 0.000 1.367 2.733 Max. Spacing 8.900 8.900 8.900 Max Vu 16.048 16.048 10140 ACI Factors (per ACI 318-02, applied intemally to entered loads) Beam Design OK Maximum Deflection -0 0550 in Max Reaction @ Left 13.59 k Max Reaction @ Right 13.59 k 4.100 5.467 6.833 8 200 It 8.900 8 900 8.900 8 900 in 9.899 9.899 15.945 15.945 k ACI C-1 8r C-2 DL 1.400 ACI C-2 Group Factor 0.750 ACal -1 4- Factor for Seismic 1 400 ACI C-1 & C-2 LL 1.700 ACI C-3 Dead Load Factor 0 900 Add"I "0 9" Factor for Seismic 0.900 ACI C-1 & C-2 ST 1.700 ACI C-3 Short Term Factor 1 300 ... seismic = ST1.100 26 MR. & MRS. PINO RESIDENCE Title: Job # Dsgnr: Date: 11 10AM, 9 JUN 05 Description Scope: rcev auuwy User KW-0606224.Ver580. 1-Dec-2oo3 Concrete Rectangular & Tee Beam Design Page 1 (01983-2003 ENERCALC Engineering Software espinom em Calculations Description 1 B-8 General Information Code Ref: ACI 318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Span 16.00 ft fc 3,000 psi Depth 36.000 in Fy 60,000 psi Width 8.000 in Concrete Wt 145.0 pcf Seismic Zone 0 End Fixity Pinned -Pinned Beam Weight Added Intemally Live Load acts with Short Term Reinforcing Rebar @ Center of Beam... Rebar @ Left End of Beam... Rebar @ Right End of Beam... Count Size- 'd' from Top Count Size 'd' from Top Count Size 'd' from Top #1 2 7 2.30in #1 2 7 2.30 in #1 2 7 2 30 in #2 2 7 33.70 in #2 2 7 33 70 in #2 2 7 33 70 in Load Factoring Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design. Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C 2 Uniform Loads Dead Load Live Load Short Term Start End #1 1.493 k 0.246 k k 0.000 ft 16.000 ft Concentrated Loads Dead Load Live Load Short Term Location #1 9.000 k 3 500 k Span = 16.00ft, Width= 8 00in Depth = 36 00in Maximum Moment: Mu 145.40 k-ft Allowable Moment. Mn'phi 173.56 k-ft Maximum Shear: Vu 28.05 k Allowable Shear: Vn'phi 47.54 k Shear Stirrups... Stirrup Area @ Section 0.220 m2 Region 0 000 2.667 5 333 Max. Spacing 16 850 16.850 Not Req'd Max Vu 28.048 28.048 2037 ACI Factors (per ACI 318-02, applied intemally to entered loads) k Maximum Deflection Max Reaction @ Left Max Reaction @ Right ACI C-1 & C-2 DL 1.400 ACI C-2 Group Factor ACI C-1 & C-2 LL 1 700 ACI C-3 Dead Load Factor ACI C-1 & C-2 ST 1.700 ACI C-3 Short Term Factor .seismic = ST1.100 5.000 ft Beam Design OK -0 1056 in 24 83 k 20.14 k 8 000 10 667 13 333 16.000 ft 16 850 16.850 16 850 16 850 in 2.037 13 444 20 905 20 905 k 0 750 Add"I "1 4" Factor for Seismic 1.400 0.900 Add"I "0.9" Factor for Seismic 0.900 1 300 27 MR. & MRS. PINO RESIDENCE Title: Job # Dsgnr: Date: 11 10AM, 9 JUN 05 Description Scope: uev aa000e Page 1 User KW-0606224, Ver 5 8 0. 1 -Dec-2003 Concrete Rectangular & Tee Beam Design (c)1983-2003 ENERCALC Engineenng Software espinosa ecw Calculations Description 1 B-9 General Information Code Ref: ACI 318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Span 11.00 ft f c 3,000 psi Depth 20.000 in Fy 60,000 psi Width 8.000 in Concrete Wt 145.0pcf Seismic Zone 0 End Fixity Pinned -Pinned Beam Weight Added Internally Live Load acts with Short Term Reinforcing Rebar @ Center of Beam... Rebar @ Left End of Beam... Rebar @ Right End of Beam... Count Size- 'd' from Top Count Size 'd' from Top Count Size 'd' from Top #1 2 5 2.20in #1 2 5 2.20 in #1 2 5 2 80 in #2 2 6 17.80 in #2 2 6 17.80 in #2 2 6 17 80 in Load Factoring Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design. Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C.2 Uniform Loads Dead Load Live Load Short Term Start End #1 1.302 k 0.560 k k 0.000 ft 11 000 ft #2 0.184 k 0 092 k k 0 000 ft 7 330 ft Span = 11.00ft, Width= 8 00in Depth = 20 00in Maximum Moment: Mu 50.26 k-ft Allowable Moment: Mn'phi 65.50 k-ft Maximum Shear. Vu 13.57 k Allowable Shear. Vn'phi 35 70 k Shear Stirrups... Stirrup Area @ Section 0.220 m2 Region 0.000 1.833 Max. Spacing 8 900 8.900 Max Vu 13.568 12.366 Beam Design OK Maximum Deflection -0 1031 in Max Reaction @ Left 12 48 k Max Reaction @ Right 11 80 k 3.667 5.500 7 333 9 167 11 000 ft Not Req'd Not Req'd Not Req'd 8 900 8.900 in 6.056 6.056 6 413 11 968 13.024 k ACI Factors (per ACI 318-02, applied internally to entered loads) ACI C-1 & C-2 DL 1 400 ACI C-2 Group Factor 0 750 Add"I "1.4" Factor for Seismic 1.400 ACI C-1 & C-2 LL 1 700 ACI C-3 Dead Load Factor 0 900 Add"I "0 9" Factor for Seismic 0 900 ACI C-1 & C-2 ST 1.700 ACI C-3 Short Term Factor 1 300 .seismic = ST' : 1.100 28 MR. & MRS. PINO RESIDENCE Title: Job # Dsgnr: Date: 11.10AM, 9 JUN 05 Description Scope Rev Se000e Page 1 - User icw-0606224,Ver680, 1-Dec-2003 Concrete Rectangular � Tee Beam Design (c)1983-2003 ENERCALC Engineenng Software esWnosa ecw Calailahons Description 1 B-10 General Information Code Ref: ACI 318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Span 17.75 It fc 3,000 psi Depth 24.000 in Fy 60,000 psi Width 8.000 in Concrete Wt 145.0 pcf Seismic Zone 0 End Fixity Pinned -Pinned Beam Weight Added Internally Live Load acts with Short Term Reinforcing Rebar @ Center of Beam... Rebar @ Left End of Beam... Rebar @ Right End of Beam... Count Size- 'd' from Top Count Size 'd' from Top Count Size 'd' from Top #1 2 5 2.20in #1 2 5 2.20 in #1 2 5 2.20 in #2 2 7 21.70 in #2 2 7 21.70 in #2 2 7 21.70 in #3 2 5 12.00in #3 2 5 12.00 in #3 2 5 12.00 in Load Factoring Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design. Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C.2 Uniform Loads Dead Load Live Load Short Tern Start End #1 0.543 k 0 238 k k 0 000 ft 15 250 ft #2 0.275 k 0.275 k k 15.250 ft 17.750 ft Concentrated Loads Dead Load Live Load Short Term Location #1 26.000 k 6 700 k Span = 17 75ft, Width= 8 00in Depth = 24.00in Maximum Moment: Mu 131 31 k-ft Allowable Moment • Mn"phi 133 80 k-ft Maximum Shear: Vu 51.00 k Allowable Shear Vn'phi 61 25 k Shear Stirrups... Stirrup Area @ Section 0.220 m2 Region 0.000 2.958 5.917 Max. Spacing 10 850 10.850 10 850 Max Vu 16.868 15.237 10 957 ACI Factors (per ACI 318-02, applied internally to entered loads) k 15.250 It Maximum Deflection Max Reaction @ Left Max Reaction @ Right ACI C 1 & C 2 DL 1.400 ACI C-2 Group Factor ACI C-1 & C-2 LL 1.700 ACI C-3 Dead Load Factor ACI C-1 & C-2 ST 1.700 ACI C-3 Short Term Factor seismic = ST " 1 100 Beam Design OK -0 4202 in 13 21 k 36 20 k 8 875 11 833 14.792 17.750 ft 10 850 Not Req'd Not Req'd 5 425 in 2.497 2.497 1 783 51.000 k 0.750 Add"I "1.4" Factor for Seismic 1.400 0.900 Add"I '0.9" Factor for Seismic 0.900 1 300 " 2q MR. & MRS. PINO RESIDENCE Title: Job # Dsgnr: Date: 11 10AM, 9 JUN 05 Description Scope: rcev oauuua Page 1 User KW-0606224,Ver560.1-Dec-2oo3 Concrete Rectangular & Tee Beam Design (01983-2003 ENERCALC Engmeenng Software espinosa ecw Calculations Description 1 B-11 General Information Code Ref: ACI 318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Span 12.83 ft fc 3,000 psi Depth 24 000 in Fy 60,000 psi Width 8.000 in Concrete Wt. 145 0 pcf Seismic Zone 0 End Fixity Pinned -Pinned Beam Weight Added Intemally Live Load acts with Short Term Reinforcing Rebar @ Center of Beam... Rebar @ Left End of Beam... Rebar @ Right End of Beam... Count Size V from Top Count Size V from Top Count Size V from Top #1 2 5 2.20in #1 2 5 2.20 in #1 2 5 2 80 in #2 2 7 21.80 in #2 2 7 21 80 in #2 2 7 21 80 in #3 2 7 19.80in #3 2 7 19.80 in #3 2 7 19.80 in Load Factoring Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design. Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C.2 Uniform Loads Dead Load Live Load Short Term Start End #1 3 853 k 1.050 k k 0.000 ft 12 830 ft Sum Span = 12 83ft, Width= 8 00in Depth = 24.00in Maximum Moment • Mu 153.29 k-ft Allowable Moment: Mn`phi 196 71 k-ft Maximum Shear: Vu 34.41 k Allowable Shear: Vn'phi 61.12 k Shear Stirrups... Stirrup Area @ Section 0.220 in2 Region 0.000 2.138 4.277 Max Spacing 5.450 10 900 10.900 Max Vu 34 409 32.115 16.058 ACI Factors (per ACI 318-02, applied internally to entered loads) Maximum Deflection Max Reaction @ Left Max Reaction @ Right ACI C-1 & C-2 DL 1.400 ACI C-2 Group Factor ACI C-1 & C-2 LL 1 700 ACI C-3 Dead Load Factor ACI C-1 & C-2 ST 1 700 ACI C-3 Short Term Factor seismic = ST • 1 100 Beam Design OK -0.1879 in 32.69 k 32.69 k 6.415 8 553 10.692 12.830 ft 10.900 10.900 10.900 5 450 in 15 675 15.675 31 733 34.027 k 0.750 Add"I "1.4" Factor for Seismic 1 400 0.900 Add"l "0.9" Factor for Seismic 0.900 1.300 '80 MR. & MRS. PINO RESIDENCE Title: Job # Dsgnr: Date: 11 10AM, 9 JUN 05 Description Scope : r[eV JtlWU`! Page 1 User KW 060622a, Ver 580, t-DecConcrete Rectangular & Tee Beam Design (c)1983-2003 ENERCALC Engineering Software espinosa ecwCalculaUons Description 113-12 General Information Code Ref: ACI 318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Span 7.33 ft fc 3,000 psi Depth 16 000 in Fy 60,000 psi Width 8.000 in Concrete Wt. 145.0 pcf Seismic Zone 0 End Fixity Fixed -Free Beam Weight Added Internally Live Load acts with Short Term Reinforcing Rebar @ Center of Beam... Rebar @ Left End of Beam... Rebar @ Right End of Beam... Count Size 'd' from Top Count Size 'd' from Top Count Size 'd' from Top #1 2 5 2.22in #1 2 5 2 20 in #1 2 5 2.20 in #2 2 5 13.70 in #2 2 5 13 70 in #2 2 5 13.70 in Load Factoring Note, Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C.2 Uniform Loads Dead Load Live Load ShortTerm Start End #1 0.556 k 0 212 k k 0 000 ft 7.330 ft Span = 7 33ft, Width= 8 00in Depth = 16.00in Maximum Moment: Mu -35.44 k-ft Allowable Moment: Mn'phi 36.00 k-ft Maximum Shear • Vu 8.16 k Allowable Shear: Vn'phi 32.81 k Shear Stirrups... Stirrup Area @ Section 0.220 in2 Region 0.000 1.222 2 443 Max. Spacing 6.850 6 850 6.850 Max Vu 8.162 8.084 6.460 ACI Factors (per ACI 318-02, applied internally to entered loads) Beam Design OK Maximum Deflection -0.1864 in Max Reaction @ Left 6 57 k Max Reaction @ Right 0 00 k 3.665 4.887 6 108 7 330 ft 6.850 Not Req'd Not Req'd Not Req'd in 3.249 3.249 1.625 1.547 k ACI C-1 & C-2 DL 1 400 ACI C-2 Group Factor 0.750 Add"I "1.4" Factor for Seismic 1.400 ACI C-1 & C-2 LL 1.700 ACI C-3 Dead Load Factor 0 900 Add"I "0.9" Factor for Seismic 0 900 ACI C-1 & C-2 ST 1.700 ACI C-3 Short Term Factor 1.300 seismic = ST 1 100 ,S) MR. & MRS. PINO RESIDENCE Title: Job # Dsgnr: Date: 11 10AM, 9 JUN 05 Description Scope : Kev 580009 User KW-0606224,Ver580.1-Dec-2003 Page 1 Concrete Rectangular & Tee Beam Design (c)1983-2003 ENERCALC Engineenng Sof rare Minosa ecwCalculahons Description 16-13 General Information Code Ref: ACI 318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Span 15.00 ft f c 3,000 psi Depth 16.000 in Fy 60,000 psi Width 12.000 in Concrete Wt. 145.0pcf Seismic Zone 0 End Fixity Pinned -Pinned Beam Weight Added Internally Live Load acts with Short Term Reinforcing Rebar @ Center of Beam... Rebar @ Left End of Beam... Rebar @ Right End of Beam... Count Size 'd' from Top Count Size 'd' from Top Count Size 'd' from Top #1 2 5 2.22in #1 2 5 2.20 in #1 2 5 2.20 in #2 2 5 13.80 in #2 2 5 13.80 in #2 2 5 13.80 in Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design. Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C 2 Uniform Loads Dead Load Live Load Short Term Start End #1 0 513 k 0.143 k k 0 000 ft 15 000 ft ma Span = 15 00ft, Width= 12 00in Depth = 16 00in Maximum Moment. Mu 34.65 k-ft Allowable Moment: Mn'phi 37.54 k-ft Maximum Shear: Vu 7 84 k Allowable Shear Vn'phi 37.86 k Shear Stirrups... Stirrup Area @ Section 0.220 in2 Region 0.000 2.500 Max Spacing 6.900 Not Req'd Max Vu 7.835 6.209 Maximum Deflection Max Reaction @ Left Max Reaction @ Right Beam Design OK -0 1481 in 6 37 k 6.37 k 5.000 7 500 10 000 12 500 15.000 ft Not Req'd Not Req'd Not Req'd Not Req'd 6 900 in 3 105 3.031 3.031 6.135 7 761 k ACI Factors (per ACI 318-02, applied intemally to entered loads) ACI C 1 & C 2 DL 1 400 ACI C-2 Group Factor 0.750 Add"I "1.4" Factor for Seismic 1.400 ACI C-1 & C-2 LL 1 700 ACI C-3 Dead Load Factor 0.900 Add"I "0.9" Factor for Seismic 0.900 ACI C-1 & C-2 ST 1.700 ACI C-3 Short Tenn Factor 1 300 seismic = ST' 1.100 i�� MR. & MRS. PINO RESIDENCE Title: Job # Dsgnr: Date: 11 10AM, 9 JUN 05 Description Scope : Rev 560009 User KW-0606224 Ver 5 8 0. 1 -Dec-2003 Page 1 Concrete Rectangular & Tee Beam Design (c)1983.2003 ENERCALC Engineenng Software espmosa ecwCalculations Description 1 B-14 General Information Code Ref: ACI 318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Span 12.83 ft f c 3,000 psi Depth 24.000 in Fy 60,000 psi Width 8.000 in Concrete Wt 145 0 pcf Seismic Zone 0 End Fixity Pinned -Pinned Beam Weight Added Intemally Live Load acts with Short Term Reinforcing Rebar @ Center of Beam... Rebar @ Left End of Beam... Rebar @ Right End of Beam... Count Size 'd' from Top Count Size 'd' from Top Count Size 'd' from Top #1 2 5 2.20in #1 2 5 2.20 in #1 2 5 2 20 in #2 2 5 21.80 in #2 2 5 21.80 in #2 2 5 21.80 in Load Factoring Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C.2 Uniform Loads Dead Load Live Load Short Term Start End #1 1.056 k 0.225 k k 0.000 ft 12.830 It Concentrated Loads Dead Load Live Load Short Term Location #1 1.608 k Span = 12.83ft, Width= 8.00in Depth = 24.00in Maximum Moment: Mu 52 77 k-ft Allowable Moment: Mn'phi 58.37 k-ft Maximum Shear. Vu 13.40 k Allowable Shear: Vn'phi 38.68 k Shear Stirrups... Stirrup Area @ Section 0 220 in2 Region 0.000 2.138 Max Spacing 10.900 10.900 Max Vu 11.170 10.514 1.608 k k 9 420 ft Maximum Deflection Max Reaction @ Left Max Reaction @ Right 4.277 6.415 8 553 Not Req'd Not Req'd Not Req'd 5.919 3.160 3.160 ACI Factors (per ACI 318-02, applied internally to entered loads) Beam Design OK -0.0719 in 10.31 k 11.82 k 10.692 12.830 ft 10.900 10.900 in 12.739 13.396 k ACI C-1 & C-2 DL 0.750 Aaa'"i -1.4"" i-actor Tor seismic 1.4UU 0.900 Add"I "0.9" Factor for Seismic 0 900 1.300 1.400 ACI C-2 Group Factor ACI C-1 & C-2 LL 1.700 ACI C-3 Dead Load Factor ACI C-1 & C-2 ST 1.700 ACI C-3 Short Term Factor seismic = ST' . 1.100 A3 FRANCISCO CUELLO JR.,P.E.,INC. Consulting Engineer la 71 K 13 • �' —k-- 19. I JOB lino 1�ja�A,i p r)r SHEET NO OF CALCULATED BY DATE SCALE � a �0 y A"�-; A 4 c� /oo 4� 2- a j 12- y 26' � i5 . # .3. xt rl @ 'e" �4,.,w r ,NEBS CUST' M pnnUng %cmcc 1 woitY+6'; 1UB, -m F. V,—.,try nn, Piu No C :•.'1Th:7'7 A4 FRANCISCO CUELLO JR.,P.E.,INC. JOB nd /p,*i)gnr Consulting Engineer SHEET NO OF CALCULATED BY DATE SCALE ! 1 /Dc A a .7 /C's/>: 1 Z- 1 al A,'1�,nJc ! �" cUlr/� l S y 1 _ S A5 3�b u 5e 6 a 0,6 = G 0 so cb = 6 o 2( 1 14 7 p-,) �0YVf J'4 2 U,05y 215x(2.75 /749 i�l 17 4 e) �u"Of5 � 7 � 2 h (4 �6) 0 35 All (LU Y S e x �Juj S 1 VoOP—�lc y I p x 4-M 0, 0 9 rn, (d OC.�Ic � U OCZ'J� s 4 0 4.15 ►.75 n, „e, P• v NE13S OUST' M pmonq %cmcc , LAP tla, f, I, , Ni -3" (r' r d,o,c wn . "..-,.n 110.1 r,ni nW v„ U 1,iny; 56 35 FRANCISCO CUELLO JR.,P.E.,INC. Consulting Engineer uPSf 1�a�5e �'�n �° sfa ► t 4 JOB ��no 61��1r'PnC� SHEET NO C OF CALCULATED BY i DATE SCALE - _ J (9 eorlc, ���a►c ( 6 Cons (V6 I' l r-,NE8SCU5T4M pnntinUw"cc "�, N., 011Im"", Si MR. & MRS. PINO RESIDENCE Title: Dsgnr: Description ,�(a Job # Date: 12 40PM, 4 JUN 05 Scope: User KW0606224.Ver580.1-Dec-2003 Concrete Rectangular & Tee Beam Design Page 1' (c)1983-2003 ENERCALC Engineenng Software espinosa ecw Calculations Description CONC. STAIR @ GUEST HOUSE General Information Code Ref: ACI 318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 1 Span 13.00 ft Yc 3,000 psi Depth 8 000 in Fy 60,000 psi Width 12.000 in Concrete Wt 145.0 pcf Seismic Zone 0 End Fixity Pinned -Pinned Beam Weight Added Intemally Live Load acts with Short Term Reinforcing Rebar @ Center of Beam... Rebar @ Left End of Beam... Rebar @ Right End of Beam... Count Size V from Top Count Size V from Top Count Size V from Top #1 3 5 6 20in #1 3 5 6.20 in #1 3 5 6 20 in Load Factoring Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design. Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C.2 Uniform Loads Dead Load Live Load Short Term Start End #1 0.530 k 0.100 k k 0.000 ft 13.000 ft Span = 13 OOft, Width= 12 00in Depth = 8 00in Maximum Moment: Mu 22 12 k-ft Allowable Moment: Mn'phi 22 13 k-ft Maximum Shear: Vu 6 32 k Allowable Shear Vn'phi 10 06 k Shear Stirrups... Stirrup Area @ Section 0.220 in2 Region 0.000 2.167 4.333 Max. Spacing 0.450 0 450 0 900 Max Vu 6.318 4.575 2.287 ACI Factors (per ACI 318-02, applied intemally to entered loads) Beam Design OK Maximum Deflection -0 7969 in Max Reaction @ Left 4 72 k Max Reaction @ Right 4 72 k ACI C-1 & C-2 DL 1.400 ACI C-2 Group Factor ACI C-1 & C-2 LL 1.700 ACI C-3 Dead Load Factor ACI C-1 & C-2 ST 1.700 ACI C-3 Short Term Factor ..seismic = ST' . 1.100 6 500 8.667 10.833 13.000 ft 0 900 0.900 0 450 0.450 in 2.233 2.233 4.520 6 263 k 0 750 Add"l "1.4" Factor for Seismic 1 400 0 900 Add"l "0.9" Factor for Seismic 0.900 1.300 37 FRANCISCO CUELLO JR.,P.E.,INC. JOB /'�no Consulting Engineer SHEET NO OF CALCULATED BY DATE SCALE 1 S,pon = J 121 2 10 �l�l 3 -2 �a g. g3 3- 1 11 sir nNFBS CUST'M pnM mq wrv,ce ;va99l•„1. 1 Nrt IZ ..a r.410 W-A ern, a. 11�11 Nn+ talx";q m FRANCISCO CUELLO JR.,P.E.,INC. Consulting Engineer /-� 3- 5 JOB Pn e l�G��Yl�t7C SHEET NO OF CALCULATED BY % DATE SCALE d r-NEUSCUST'Mprtntmgietwre u;.,ticaL;, NL-)�,„ P... mnainRra„omtz r,Ya�cn,,•�.� 9•„N„Gt41%,;t7 MR. & MRS. PINO RESIDENCE Title: Job # Dsgnr: Date: 12.38PM, 4 JUN 05 Description Scope : uev bauoue Page 1 user KW-0606224 , Ver 5 8 0, 1 -Dec-2003 Concrete Rectangular & Tee Beam Design (01983.2003 ENERCALC Engineenng Software espinosa ecwCalaiabons Description RB-1 General Information Code Ref: ACI 318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Span 7.00 ft fc 3,000 psi Depth 16.000 in Fy 60,000 psi Width 8.000 in Concrete Wt. 145.0 pcf Seismic Zone 0 End Fixity Pinned -Pinned Beam Weight Added Intemally Live Load acts with Short Term Reinforcing Rebar @ Center of Beam... Rebar @ Left End of Beam... Rebar @ Right End of Beam... Count Size 'd' from Top Count Size 'd' from Top Count Size 'd' from Top #1 2 5 2 20in #1 2 5 2.20 in #1 2 5 2 20 in #2 2 5 13.80 in #2 2 5 13.80 in #2 2 5 13.80 in Load Factoring Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design. Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C 2 Uniform Loads Dead Load Live Load Short Term Start End #1 2.100 k 0 634 k k 0.000 ft 7.000 ft Span = 7.00ft, Width= 8 00m Depth = 16 00in Maximum Moment: Mu 25 71 k-ft Allowable Moment. Mn'phi 36.02 k-ft Maximum Shear. Vu 9.87 k Allowable Shear: Vn'phi 32.72 k Shear Stirrups... Stirrup Area @ Section 0.220 m2 Region 0.000 1.167 Max. Spacing 6.900 6.900 Max Vu 9.874 9.874 Beam Design OK Maximum Deflection -0.0374 in Max Reaction @ Left 10 02 k Max Reaction @ Right 10 02 k 2.333 3 500 4.667 5.833 7 000 ft Not Req'd Not Req'd Not Req'd 6.900 6 900 in 4.937 4.820 4.820 9.757 9.757 k ACI Factors (per ACI 318-02, applied intemally to entered loads) ACI C-1 & C-2 DL 1 400 ACI C-2 Group Factor 0.750 Add"I "1.4" Factor for seismic 1 400 ACI C-1 & C-2 LL 1.700 ACI C-3 Dead Load Factor 0.900 Add"I "0 9" Factor for Seismic 0 900 ACI C-1 & C-2 ST 1 700 ACI C-3 Short Term Factor 1 300 . seismic = ST 1 100 MR. & MRS. PINO RESIDENCE Title: Job # Dsgnr: Date: 12 38PM, 4 JUN 05 Description Scope: Rev 580008 User KW-0606224. Ver 5 8 0. 1 -Dec-2003 Concrete Rectangular & Tee Beam Design Page 1 (c)1983-2003 ENERCALC Engineering Software espinosa ecw Calculabons twa Description RB-2 General Information Code Ref: ACI 318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Span 8 33 ft fc 3,000 psi Depth 12.000 in Fy 60,000 psi Width 8.000 in Concrete Wt. 145.0 pcf Seismic Zone 0 End Fixity Pinned -Pinned Beam Weight Added Intemally Live Load acts with Short Term Reinforcing Rebar @ Center of Beam... Rebar @ Left End of Beam... Rebar @ Right End of Beam... Count Size 'd' from Top Count Size 'd' from Top Count Size 'd' from Top #1 2 5 2.20in #1 2 5 2.20 in #1 2 5 2.20 in #2 2 5 9.80 in #2 2 5 9 80 in #2 2 5 9 80 in Load Factoring Note, Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design. Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C 2 Uniform Loads Dead Load Live Load Short Term Start End #1 0.248 k 0.248 k k 0.000 It 3.250 ft #2 0.670 k 0.334 k k 0 000 ft 8 330 ft Concentrated Loads Dead Load Live Load Short Term Location #1 0.867 k 0.867 k Span = 8.33ft, Width= 8 00in Depth = 12.00in Maximum Moment: Mu 21 84 k-ft Allowable Moment • Mn`phi 24.84 k-ft Maximum Shear • Vu 8 25 k Allowable Shear • Vn"phi 29 74 k Shear Stirrups... Stirrup Area @ Section 0.220 in2 Region 0 000 1 388 2 777 Max. Spacing 4 900 4 900 Not Req'd Max Vu 8.252 6.887 3 514 ACI Factors (per ACI 318-02, applied internally to entered loads) k 4.200 ft Maximum Deflection Max Reaction @ Left Max Reaction @ Right ACI C-1 & C-2 DL 1.400 ACI C-2 Group Factor ACI C-1 & C-2 LL 1.700 ACI C-3 Dead Load Factor ACI C-1 & C-2 ST 1.700 ACI C-3 Short Term Factor .seismic = ST ' 1 100 Beam Design OK -0.1324 in 6.74 k 5.77 k 4 165 5.553 6 942 8.330 It 4 900 4 900 4 900 4 900 in 3.514 4.085 6 381 7.311 k 0 750 Add"I "1 4" Factor for Seismic 1 400 0 900 Add"I "0 9" Factor for Seismic 0.900 1 300 41 MR. & MRS. PINO RESIDENCE Title: Job # Dsgnr: Date: 12 39PM, 4 JUN 05 Description Scope: uev 550ooe Page 1 User KW-0606224. Ver 5 8 0. 1 -Dec-2003 Concrete Rectangular & Tee Beam Design (c)1983-2003 ENERCALC Engmeenng Software espinosa ecw Calculabons Description RB-4 General Information Code Ref: ACI 318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Span 1075 ft fc 3,000 psi Depth 21.000 in Fy 60,000 psi Width 8 000 in Concrete Wt. 145.0 pcf Seismic Zone 0 End Fixity Pinned -Pinned Beam Weight Added Intemally Live Load acts with Short Term Reinforcing Rebar @ Center of Beam... Rebar @ Left End of Beam... Rebar @ Right End of Beam... Count Size 'd' from Top Count Size 'd' from Top Count Size 'd' from Top #1 2 5 2.20in #1 2 5 2.20 in #1 2 5 2.20 in #2 2 5 18 80 in #2 2 5 18.80 in #2 2 5 18.80 in Load Factoring Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C.2 Uniform Loads Dead Load Live Load Short Term Start End #1 1.661 k 0.490 k k 0.000 ft 10 750 ft Span = 10.75ft, Width= 8.00in Depth = 21 00in Maximum Moment: Mu 49.05 k-ft Allowable Moment. Mn'phi 49.99 k-ft Maximum Shear Vu 12.99 k Allowable Shear - Vn'phi 36.44 k Shear Stirrups... Stirrup Area @ Section 0.220 in2 Region 0.000 1.792 Max. Spacing 9.400 9 400 Max Vu 12.994 12.264 Maximum Deflection Max Reaction @ Left Max Reaction @ Right 3.583 5 375 7 167 Not Req'd Not Req'd Not Req'd 6.132 5.986 5.986 ACI Factors (per ACI 318-02, applied internally to entered loads) Beam Design OK -0 0903 in 12.47 k 12.47 k 8.958 10.750 It 9.400 9.400 in 12 118 12.848 k ACI C-1 & C-2 DL 1.400 ACI C-2 Group Factor 0.750 Add"I "1.4" Factor for Seismic 1.400 ACI C-1 & C-2 LL 1 700 ACI C-3 Dead Load Factor 0 900 Add"I "0 9" Factor for Seismic 0 900 ACI C-1 & C-2 ST 1.700 ACI C-3 Short Term Factor 1.300 .seismic = ST ' : 1.100 14G MR. & MRS. PINO RESIDENCE Title: Job # Dsgnr: Date: 12 39PM, 4 JUN 05 Description Scope : Rev 560006 User KW-0606224,Ver560.1-Dec-2003 Concrete Rectangular & Tee Beam Design Page 1 ' (c)1963-2003 ENERCALC Engineering Software espinosa ecwCalculabons Description RB-5 General Information Code Ref: ACI 318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Span 8 00 ft fc 3,000 psi Depth 16.000 in Fy 60,000 psi Width 14.000 in Concrete Wt 145.0 pcf Seismic Zone 0 End Fixity Pinned -Pinned Beam Weight Added Internally Live Load acts with Short Term Reinforcing Rebar @ Center of Beam... Rebar @ Left End of Beam... Rebar @ Right End of Beam... Count Size 'd' from Top Count Size 'd' from Top Count Size 'd' from Top #1 2 5 2.20in #1 2 5 2 20 in #1 2 5 2.20 in #2 2 5 13.80 in #2 2 5 13.80 in #2 2 5 13.80 in Load Factoring Note: Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C.2 Uniform Loads Dead Load Live Load Short Term Start End #1 1.313 k 0.513 k k 0.000 ft 8.000 ft Span = 8 00ft, Width= 14 00in Depth = 16.00in Maximum Moment: Mu 24.21 k-ft Allowable Moment * Mn'phi 38.09 k-ft Maximum Shear Vu 8 72 k Allowable Shear Vn'phi 17 99 k Shear Stirrups... Stirrup Area @ Section 0.220 in2 Region 0.000 1.333 Max. Spacing Not Req'd Not Req'd Max Vu 8.715 8.134 Beam Design OK Maximum Deflection -0 0127 in Max Reaction @ Left 821 k Max Reaction @ Right 821 k 2.667 4.000 5.333 6.667 8 000 ft Not Req'd Not Req'd Not Req'd Not Req'd Not Req'd in 4.067 3 970 3 970 8 037 8.618 k ACI Factors (per ACI 318-02, applied internally to entered loads) ACI C-1 & C-2 DL 0.750 MCI "1.4" I -actor tor Seismic 1.400 0.900 Add"I "0.9" Factor for Seismic 0 900 1.300 1.400 ACI C-2 Group Factor ACI C-1 & C-2 LL 1 700 ACI C-3 Dead Load Factor ACI C-1 & C-2 ST 1 700 ACI C-3 Short Term Factor .seismic = ST' . 1 100 48 MR. 8r MRS. PINO RESIDENCE User KW-0606224 Ver 5 8 0. 1-Dec-2003 (c)1983-2003 ENERCALC Engineenng Software Description RB-8 Title : Dsgnr: Description Scope : Multi -Span Concrete Beam Job # Date: 11.10AM, 9 JUN 05 Page 1 ecw Calculation General Information Code Ref: ACI 318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Fy 60,000.0 psi Spans Considered Continuous Over Supports ACI Dead Load Factor 1.40 Pc 3,000.0 psi Stirrup Fy 40,000.0 psi ACI Live Load Factor 1 70 Concrete Member Information Description LEFT RIGHT Span ft 5.33 6.83 Beam Width in 8.00 8.00 Beam Depth in 16.00 16.00 End Fixity Pin -Pin Pin -Pin Reinforcing Center Area 0.62in2 0.62in2 Bar Depth 9.80in 9.80in Left Area 0.621n2 0.62in2 Bar Depth 2.20in 2.20in Right AFea 0.62in2 0.62in2 Bar Depth 2.20in 2.20in Loads Using Live Load This Span ?? Yes Yes Dead Load k/ft 0.790 0.790 Live Load k/ft 0.225 0.225 Dead Load k/ft 0.133 0.133 Live Load k/ft Start ft 0 000 0.000 End ft 5 330 6.830 Results Beam OK Beam OK Mmax @ Cntr k-ft 2.59 6.14 @X= ft 1.74 4.14 Mn ' Phi k-ft 24.80 24.80 Max @ Left End k-ft 0.00 -8 09 Mn . Phi k-ft 35.96 I 35.96 Max @ Right End k-ft -8.09 0.00 Mn ' Phi k-ft 3596 35.96 Bending OK Bending OK Shear @ Left k 2.94 6.90 Shear @ Right k 5.98 4.53 Reactions Deflections DL @ Left K 1.0z r. lu LL @ Left k 0.40 1.73 Total @ Left k 2.02 883 DL @ Right k 7.10 2.50 LL @ Right k 1.73 0.61 Total @ Right k 883 311 Max Deflection in -0.001 -0.003 @ X = ft 1.88 3.82 Inertia Effective In4 2,73067 2,730.67 44 MR. & MRS. PINO RESIDENCE Title: Job # Dsgnr: Date: 11.10AM, 9 JUN 05 Description Scope Rev 580000 Page 2 User KW-0606224, Ver 5 8 0. 1 -Dec-2003 Multi -Span Concrete Beam (c)1983-2003 ENERCALC Engineenng Software espmosa ecwCalculahons Description R13-8 Shear Stirrups Stirrup Rebar Area in2 0.220 0.220 Spacing @ Left in Not Req'd Not Req'd Spacing @ 2'L in Not Req'd Not Req'd Spacing @ 4'L in Not Req'd Not Req'd Spacing @ .6'L in Not Req'd Not Req'd Spacing @ .8'L m Not Req'd Not Req'd Spacing @ Right in Not Req'd Not Req'd Query Values Location ft 0.00 0.00 Moment k-ft 0.0 -8.1 Shear k 2.9 6.9 Deflection in 0.0000 0.0000 45 FRANCISCO CUELLO JR.,P.E.,INC. Consulting Engineer � qy �► �. 25 b' e(,yr . is ) 15, 4: s JOB ;)/ 20Q SHEET NO OF CALCULATED BY DATE A- 4-05T SCALE FAS .,ru• t,on• NERS COST' W pi1n1 tj se v,ce � �: of:., , Nitz, in {�iwiu , , , P�,1, A 1.-1,,.�<, t J IN - l. a in;•t� PINO RESIDENCE Title: Job # Dsgnr: Date: 2 09PM, 4 AUG 05 Description Scope: Kev aeoouo Page 1 User KW-0606224,Ver580.1-Dec-2003 Multi -Span Concrete Beam (c)1983-2003 ENERCALC Engineering Software espinosa ecw Calculations Description SLAB BEAM @ BALCONY General Information Code Ref: ACI 318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Fy 60,000.0 psi Spans Considered Continuous Over Supports ACI Dead Load Factor 140 fc 3,000.0 psi Stirrup Fy 40,000.0 psi ACI Live Load Factor 1.70 Concrete Member Information Description INTERIOR SLABNY (OVERHANG) Span ft 925 3.50 Beam Width in 1200 12.00 Beam Depth in 600 550 End Fixity Pin -Pin Pin -Free Reinforcing Center Area 0.20in2 Bar Depth 4.25in Left Area 0.20in2 0 20in2 Bar Depth 4.25in 1.751n Right Area 0 20in2 Bar Depth 1 751n Loads Using Live Load This Span ?? Yes Yes Dead Load k/ft 0 105 0 100 Live Load k/ft 0 040 0 100 Point #1 DL k 0 280 LL k @ X ft 0 000 3 500 Moment DL k-ft 018 LL k-ft 0.00 @ X ft 000 3.50 Results Beam OK Beam OK Mmax @ Cntr k-ft 1 04 000 @X= ft 308 000 Mn ' Phi k-ft 364 0.00 Max @ Left End k-ft 0.00 -3.03 Mn ' Phi k-ft 1 39 319 Max @ Right End k-ft -3.03 000 Mn ' Phi k-ft 364 000 Bending OK Bending OK Shear @ Left k 067 1 48 Shear @ Right k 1 32 000 Reactions & Deflections DL @ Left k 033 1 27 LL @ Left k 012 060 Total @ Left k 045 1 87 DL @ Right k 1 27 000 LL @ Right k 060 000 Total @ Right k 1 87 000 Mali Deflection in -0 009 -0 013 @ X = ft 339 350 Inertia Effective In4 21600 0.00 ,47 PINO RESIDENCE Title: Job # Dsgnr: Date: 2 09PM, 4 AUG 05 Description Scope Rev 58000o User KW-0606224, Ver 5 a 0. 1 -Dec-2003 Multi -Span Page 2 Concrete Beam espnosa ecw Calcvlabons (c)1983-2003 ENERCALC Engineenng Software Description SLAB BEAM @ BALCONY Shear Stirrups Stirrup Rebar Area tn2 0.000 0.000 Spacing @ Left In Not Req'd Not Req'd Spacing @ 2'L to Not Req'd Not Req'd Spacing @ .4'L In Not Req'd Not Req'd Spacing @ 6'L In Not Req'd Not Req'd Spacing @ 8'L In Not Req'd Not Req'd Spacing @ Right to Not Req'd Not Req'd Query Values Location ft 0.00 0.00 Moment k-ft 00 -3 0 Shear k 0.7 15 Deflection In 0.0000 00000 .i W FRANCISCO CUELLO JR.,P.E.,INC. Consulting Engineer JOB Ano 1�16vn SHEET NO OF CALCULATED BY d, /'• r DATE SCALE 0I��t1 ti t J i I - C7rc' ` 2 - 12U Chu d6yr zr bolt % 5 2� I t'G/l��s� 4+ne p ILc�- _� �l c°��' x I 1= o��J� y 7 I f i ftt IN FRANCISCO CUELLO JR.,P.E.,INC. Consulting Engineer JOB SHEET NO _ CALCULATED BY SCALE OF _ DATE `► x8 Wood bLdr7on r Ab 4 as , 1'0 3 ck x, NERS CUST' M prhaing WMce 1 ",/ 1 bli," . NERI. fix Fr ,,I.:m ,,, ,cr, r ., ROr No G I-'l,V,7'.9 50 FRANCISCO CUELLO JR.,P.E.,INC. Consulting Engineer 114 J35G�5� JOB SHEET NO OF CALCULATED BY DATE — U SCALE � 6 : /2oa p6t S = ,Y x r� &At4 �b �6,6) / J �Y31 601h� x q. 4 = 15-04. - �esr5� - �� � _ q►�� x l � = IU 45 Fb o ,n-5 �h rod _ /0 9 95 = ) Q 90/`:16L 7-� 9-6 1 —deg r•,,,, NEBS CUST' M printing %ervice I t,nv 15W r,;;" Ni e5 in. ?, v„,crq,,,t,,mi, t •cb SO)toc) IsYle')c1e) f b fl�i .:iG �a1TT,; tt 51 FRANCISCO CUELLO JR.,P.E.,INC. Consulting Engineer 2„ V� )v = P)CO � 4'W Orr JOB Y}G LOG yl yn l7 SHEET NO OF L CALCULATED BY F. DATE I J — U 5- SCALE �Ia � P c�p8cr L lJ l Ice) 1 flao I P�gp �rp,r 1 3 L 4 " m, n nbPc� r IP���°�'� An-,u,er Prep, NEBS COST" BA printing sc,"ke r t1M1 bM b.r.',' Nf&. In. N,nia ...uy, :�I n:,a �� �,n �� rs • n �, kr' :.�. ,•, e finJ, •�, e FRANCISCO CUELLO JR.,P.E.,INC. Consulting Engineer rQ%ur i 0 t ; 3a(5� x 1,5- ' - 2 2b %rW� C7c��� ��� = 5G. 2a�6� � - �. 25- G,►�� JOB SHEET NO OF CALCULATED BY f DATE SCALE J- @ 40''-fc n„„r�a 1,—NEBS GUST' M printing service , W%j 6f'.. iaW,,,,:w 1,1+ PIrt t+, " !,_, I,,- :a 5S FRANCISCO CUELLO JR.,P.E.,INC. JOB lino l�a5r��nr Consulting Engineer SHEET NO OF / CALCULATED BY DATE SCALE IM a 7 �'7-5� A �: 6 / / � q)l P4 49 - Pip = 71, 71 /f,4 /s & 40 p, co,u, i+ern NEBS CUST� M 'printing service NU: • v. :i, • i .. ,, I+ "r- ;z 54 MA FRANCISCO CUELLO JR.,P.E.,INC. Consulting Engineer 4B (Wood foa)) CUPS �5�. 100 ( 1-2T a) �G�� x ► s 2 2 880 5. L 2 (a, co ¢0 x �I S' _ 666 JOB /i i7n &6-Y),once SHEET NO OF CALCULATED BY �' r• DATE SCALE h_ (��, 2,) �1�1-1 q. 4 ✓ Pa= 5q.24�6f P06 :: 71. 711 j'53 44. 75� 31 - 0.96 t�.•,r.,f•nmNEBSCUST• M'prl„ttnq Service ft4oe,}tt,- P'.o•ena fit 71L e to N :, 55 FRANCISCO CUELLO JR.,P.E.,INC. Consulting Engineer Joe SHEET NO C OF CALCULATED BY r DATE SCALE -80 8 .tio ( wo/� l _I00 1Tl3-1 C� — — 6. /3w ,99 /eo-,4 G L = 2 �'� 1 /�� yUc)� 1 � U/L ©= 54,7�g ro 1-1 ,NfBSCUST<M-pr[mint•ew¢o tav" R. ?,.,t a,v�ar,y MR. 8r MRS. PINO RESIDENCE Title: Job # Dsgnr: Date: 1 49PM, 14 JUN 05 Description Scope : rcev ouwu`' Page 1 User KW-0606224, Ver 5 8 0. 1 -Dec-2003 Concrete Rectangular & Tee Beam Design (01983-2003 ENERCALC Engineering Software, espinosa em Calculahons Description 1TB-1 FOR WIND LOAD (EL 11'-9") General Information Code Ref: ACI 318-02, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Span 13.83 ft fc 3,000 psi Depth 8 000 in Fy 60,000 psi Width 12.000 in Concrete Wt. 145.0pcf Seismic Zone 0 End Fixity Pinned -Pinned Beam Weight Not Added Live Load acts with Short Term Reinforcing Rebar @ Center of Beam... Rebar @ Left End of Beam... Reber @ Right End of Beam... Count Size 'd' from Top Count Size 'd' from Top Count Size 'd' from Top #1 2 5 2.10in #1 2 5 2.10 in #1 2 5 210 in #2 2 5 5 90 in #2 2 5 5.90 in #2 2 5 5.90 in Load Factoring Note Load factoring supports 2003 IBC and 2003 NFPA 5000 by virtue of their references to ACI 318-02 for concrete design Factoring of entered loads to ultimate loads within this program is according to ACI 318-02 C 2 Uniform Loads Dead Load Live Load Short Term Start End #1 k k 0 404 k 0 000 ft 13 830 ft Span = 13 83ft, Width= 12 00in Depth = 8 00in Maximum Moment Mu 12.56 k-ft Allowable Moment Mn'phi 15 28 k-ft Maximum Shear Vu 3.40 k Allowable Shear • Vn'phi 29.03 k Shear Stirrups... Stirrup Area @ Section 0 220 m2 Region 0 000 2.305 Max Spacing 2.950 Not Req'd Max Vu 3 399 2.441 Beam Design OK Maximum Deflection -0.6817 in Max Reaction @ Left 2 79 k Max Reaction @ Right 2 79 k 4.610 6 915 9.220 11 525 13 830 it Not Req'd Not Req'd Not Req'd Not Req'd 2 950 in 1.220 1 191 1.191 2 411 3 370 k ACI Factors (per ACI 318-02, applied internally to entered loads) ACI C-1 & C-2 DL 1 400 ACI C-2 Group Factor 0.750 Add"I "1 4" Factor for Seismic 1 400 ACI C-1 & C-2 LL 1 700 ACI C-3 Dead Load Factor 0.900 Add"I "0.9" Factor for Seismic 0.900 ACI C-1 & C-2 ST 1 700 ACI C-3 Short Term Factor 1 300 seismic = ST 1.100 57 MASONRY -- Concrete Masonry Design System National Concrete Masonry Association Prjct. PINO RESIDENCE Name: Topic. GUEST HOUSE (SOUTH WALL) Date: 6-14-2005 Page: Chkd E.F. Design of a Reinforced Masonry Wall with Out -of -Plane Loads Using the 1999 MSJC ASD Design Code Material and Construction Data 8 in. CMU, Partial grout, running bond Wall Weight = 41 psf (From Tables) Type S mortar Masonry cement / Air -entrained PCL Mortar, Coarse Grout CM Concrete Density = 115 pcf Unit Compressive Strength = 1900 psi fm = 1500 psi (From Tables) Em = goof = 1350000 psi Wall Design Details Thickness = 7.625 in. Height = 114 in. (Simply Supported Wall, Effective height = H) x = 3.813 in. #5 Bars, Grade 60 Reinforcement Spacing = 48 in. On -Center Wall Support Simply Supported Wall Specified Load Components Load P (lb) a (in) W1(psf) W2 (psf) L (in) h1 (in) h2 (in) Dead 683 0 0 0 0 0 8 Live 225 0 0 0 0 0 8 Soil 0 0 0 0 0 0 8 Fluid 0 0 0 0 0 0 8 Wind 0 0 5924 59.24 0 0 8 Seismic 0 0 0 0 0 0 8 Roof 0 0 0 0 0 0 8 Rain 0 0 0 0 0 0 8 Snow 0 0 0 0 0 0 8 Controlling Load Cases __ _ __ __ Section Forces with Controlling Flexure and Axial Load--D + W x/H = 0.070 from bottom of wall V = -1.287 Ib/ft MIL = 146.91421 lb -in /ft P = 1045.24 Ib/ft at en = 0 in MT = ML + Pen = 146.91421 lb-in/ft Moment Capacity = 12212.232 lb-in/ft (1017.686 lb-ft/ft) at this axial load Shear Capacity = 1049.5886 lb/ft The wall is adequate for these critical section forces. Section Forces with Controlling Shearing Force--D + L + Lr + S + R + W x/H = 0.000 from bottom of wall V = 38.1076 Ib/ft ML = 0 lb-in./ft P = 1297.5 Ib/ft at en = 0 in MT = ML + Pen = 0 lb-in/ft Moment Capacity = 13047.457 lb-in/ft at this axial load Shear Capacity = 1049.5886 Ib/ft The wall is adequate for these critical section forces. These were found to be load cases that controlled the design. The flexural, shear and axial forces shown are those occuring at the critical section for the case controlled by flexure and at the critical section for the case controlled by shear. The following design calculations are for the section with controlling bending moment Section Design Forces Used V = -1.287 Ib/ft (Computed from Loads) MIL = 146 91421 lb -in /ft (Computed from Loads) P_ = 1045.23 Ib/ft at e = 0 in (Computed from Loads) Computed Design Values Note- 1/3 stress increase was used Effective Width = 48 in %A/ch Wirith = R 111 in nn cffnr•fivn Wirith 59 Allowable Shearing Force = 1049.59 Ib/ft The wall is adequate in shear Required As = 0 in2 each reinforced cell (0 in2/ft) OK d = 3.813 in n = 21.48 kbalanced = 0.3092 . Jbalanced = 0.8969 k = 0.06854 j = 0.9772 Pmax (Compression) = 73771.9 Ibs (18443 Ibs/ft) OK Pmax (Tension) = 9920 Ibs (2480 Ibs/ft) OK The wall has adequate capacity. (00 MASONRY -- Concrete Masonry Design System National Concrete Masonry Association Prjct. PINO RESIDENCE Name: Topic: GUEST HOUSE (EAST WALL) Date: 6-14-2005 Page: Chkd: E.F. Design of a Reinforced Masonry Wall with Out -of -Plane Loads Using the 1999 MSJC ASD Design Code Material and Construction Data 8 in. CMU, Partial grout, running bond Wall Weight = 41 psf (From Tables) Type S mortar Masonry cement / Air -entrained PCL Mortar, Coarse Grout CM Concrete Density = 115 pcf Unit Compressive Strength = 1900 psi fm = 1500 psi (From Tables) Em = 900fm = 1350000 psi Wall Design Details Thickness = 7.625 in Height = 114 in. (Simply Supported Wall, Effective height = H) x = 3.813 in. #5 Bars, Grade 60 Reinforcement Spacing = 48 in. On -Center Wall Support Simply Supported Wall Specified Load Components Load P (lb) a (in) W1(psf) W2 (psf) L (in) h1 (in) h2 (m) Dead 205 0 0 0 0 0 114 Live 68 0 0 0 0 0 114 Soil 0 0 0 0 0 0 114 Fluid 0 0 0 0 0 0 114 Wind 0 0 59.24 59.24 0 0 114 Seismic 0 0 0 0 0 0 114 Roof 0 0 0 0 0 0 114 Rain 0 0 0 0 0 0 114 Snow 0 0 0 0 0 0 114 Controlling Load Cases I Section Forces with Controlling Flexure and Axial Load--D + W x/H = 0.520 from bottom of wall V = -11 2556 Ib/ft ML = 8006.7836 lb-in./ft P = 391 96 Ib/ft at en = 0 in MT = ML + Pen = 8006.7836 lb-in/ft Moment Capacity = 10032.47 lb-in/ft (836.03913 lb-ft/ft) at this axial load 1 Shear Capacity = 1049.5886 Ib/ft The wall is adequate for these critical section forces. Section Forces with Controlling Shearing Force--D + L + Lr + S + R + W x/H = 0.000 from bottom of wall V = 281.39 Ib/ft ML = 0 lb-m./ft P = 662.5 Ib/ft at en = 0 in MT = ML + Pen = 0 lb-in/ft Moment Capacity = 10938.258 lb-in/ft at this axial load Shear Capacity = 1049.5886 Ib/ft The wall is adequate for these critical section forces. These were found to be load cases that controlled the design The flexural, shear and axial forces shown are those occuring at the critical section for the case controlled by flexure and at the critical section for the case controlled by shear. The following design calculations are for the section with controlling bending moment Section Design Forces Used V = -11 2556 Ib/ft (Computed from Loads) ML = 8006.7836 lb -in /ft (Computed from Loads) i P = 391 96 Ib/ft at e = 0 in (Computed from Loads) Computed Design Values j Note- 1/3 stress increase was used i Effective Width = 48 in. i \A/=h Wirith = R 111 in nn cffar•ti%/= 1AIAth 62 Allowable Shearing Force = 1049.59 Ib/ft The wall is adequate in shear Required As = 0.235 in2 each reinforced cell (0.05875 in2/ft) OK d = 3.813 in. n = 21.48 kbalanced = 0.3092 ibalanced = 0.8969 k=0227 j = 0.9243 Pmax (Compression) = 73771.9 Ibs (18443 Ibs/ft) OK Pmax (Tension) = 9920 Ibs (2480 Ibs/ft) OK The wall has adequate capacity. MASONRY -- Concrete Masonry Design System National Concrete Masonry Association Prjct: PINO RESIDENCE Name: Topic. MAIN HOUSE (PERP TO JOIST) Date: 6-14-2005 Page: Chkd: E.F. Design of a Reinforced Masonry Wall with Out -of -Plane Loads Using the 1999 MSJC ASD Design Code Material and Construction Data 8 in. CMU, Partial grout, running bond Wall Weight = 41 psf (From Tables) Type S mortar Masonry cement / Air -entrained PCL Mortar, Coarse Grout CMU Concrete Density = 115 pcf Unit Compressive Strength = 1900 psi fm = 1500 psi (From Tables) Em = 900fm = 1350000 psi Wall Design Details , Thickness = 7.625 in. Height = 122.4 in. (Simply Supported Wall, Effective height = H) x = 3.813 in. #5 Bars, Grade 60 Reinforcement Spacing = 48 in. On -Center Wall Support: Simply Supported Wall Specified Load Components Load P (lb) a (in) W1(psf) W2 (psf) L (in) h1 (in) h2 (in) Dead 1206 0 0 0 0 0 122.4 Live 398 0 0 0 0 0 122.4 Soil 0 0 0 0 0 0 122.4 Fluid 0 0 0 0 0 0 122.4 Wind 0 0 59.2 59.2 0 0 122.4 Seismic 0 0 0 0 0 0 122.4 Roof 0 0 0 0 0 0 122.4 Rain 0 0 0 0 0 0 122.4 Snow 0 0 0 0 0 0 1224 Controlling Load Cases R Section Forces with Controlling Flexure and Axial Load--D + W x/H = 0.520 from bottom of wall V =-12.0768 Ib/ft ML = 9223.97 lb-in./ft P = 1406.74 Ib/ft at en = 0 in MT = ML + Pen = 9223.97 lb-in/ft Moment Capacity = 13408.081 lb-in/ft (1117.3401 lb-ft/ft) at this axial load Shear Capacity = 1049.5886 Ib/ft The wall is adequate for these critical section forces. Section Forces with Controlling Shearing Force--D + L + Lr + S + R + W x/H = 0.000 from bottom of wall V = 301 92 Ib/ft ML = 0 lb-in./ft P = 2022.2 Ib/ft at en = 0 in MT = ML + Pen = 0 lb-in/ft Moment Capacity = 15428.835 lb-in/ft at this axial load Shear Capacity = 1049.5886 Ib/ft The wall is adequate for these critical section forces. These were found to be load cases that controlled the design. The flexural, shear and axial forces shown are those occuring at the critical section for the case controlled by flexure and at the critical section for the case controlled by shear The following design calculations are for the section with controlling bending moment I Section Design Forces Used i V =-12.0768 Ib/ft (Computed from Loads) ML = 9223.97 lb-in./ft (Computed from Loads) R = 1406 74 Ib/ft at e = 0 in (Computed from Loads) Computed Design Values Note 1/3 stress increase was used Effective Width = 48 in. \Alch Wirith = R Z1R in nn cff=r-fwa Wirifh 65 Allowable Shearing Force = 1049.59 Ib/ft The wall is adequate in shear Required As = 0.1531 in2 each reinforced cell (0.03828 in2/ft) OK d = 3.813 in. n = 21.48 kbalanced = 0.3092 ibalanced = 0.8969 k = 0.242 j = 0.9193 Pmax (Compression) = 72606.4 Ibs (18151.6 Ibs/ft) OK Pmax (Tension) = 9920 Ibs (2480 Ibs/ft) OK The wall has adequate capacity. 9 MASONRY -- Concrete Masonry Design System National Concrete Masonry Association Prjct: PINO RESIDENCE Name: Topic: MAIN HOUSE (PERP TO W. TRUSS) Date: 6-14-2005 Page- Chkd: E.F. Design of a Reinforced Masonry Wall with Out -of -Plane Loads Using the 1999 MSJC ASD Design Code Material and Construction Data 8 in CMU, Partial grout, running bond Wall Weight = 42.5 psf (From Tables) Type S mortar Masonry cement / Air -entrained PCL Mortar, Coarse Grout CM Concrete Density = 115 pcf Unit Compressive Strength = 1900 psi fm = 1500 psi (From Tables) Em = 900fm = 1350000 psi Wall Design Details Thickness = 7.625 in. Height = 122.4 in (Simply Supported Wall, Effective height = H) x = 3.813 in #5 Bars, Grade 60 Reinforcement Spacing = 40 in. On -Center Wall Support: Simply Supported Wall Specified Load Components Load P (lb) a (in) W1(psf) W2 (psf) L (in) h1 (in) h2 (in) Dead 248 0 0 0 0 0 122.4 Live 248 0 0 0 0 0 122.4 Soil 0 0 0 0 0 0 122.4 Fluid 0 0 0 0 0 0 1224 Wind 0 0 71.79 71.79 0 0 1224 Seismic 0 0 0 0 0 0 122.4 Roof 0 0 0 0 0 0 122.4 Rain 0 0 0 0 0 0 122.4 Snow 0 0 0 0 0 0 122.4 Controlling Load Cases 67 Section Forces with Controlling Flexure and Axial Load--D + W x/H = 0.520 from bottom of wall V =-14.6452 Ib/ft ML = 11185.622 lb-in./ft P = 456.08 Ib/ft at en = 0 in MT = ML + Pen = 11185.622 lb-in/ft Moment Capacity = 11902.926 lb-in/ft (991.91052 lb-ft/ft) at this axial load Shear Capacity = 1104.587 lb/ft The wall is adequate for these critical section forces. Section Forces with Controlling Shearing Force--D + L + Lr + S + R + W x/H = 0.000 from bottom of wall V = 366.129 Ib/ft ML = 0 lb-in./ft P = 929.5 lb/ft at en = 0 in MT = ML + Pen = 0 lb-in/ft Moment Capacity = 13469.965 lb-in/ft at this axial load Shear Capacity = 1104.587 Ib/ft The wall is adequate for these critical section forces. These were found to be load cases that controlled the design. The flexural, shear and axial forces shown are those occuring at the critical section for the case controlled by flexure and at the critical section for the case controlled by shear. The following design calculations are for the section with controlling bending moment Section Design Forces Used V =-14.6452 Ib/ft (Computed from Loads) ML = 11185 622 lb -in /ft (Computed from Loads) P = 456.08 Ib/ft at e = 0 in (Computed from Loads) Computed Design Values Note- 1/3 stress increase was used Effective Width = 40 in. I %A/ch %A/irlth = R Z14 in nn offcrtiv= width M Allowable Shearing Force = 1104.59 Ib/ft The wall is adequate in shear Required As = 0.2876 in2 each reinforced cell (0.08627 in2/ft) OK d=3813in. n = 21.48 kbalanced = 0.3092_ ibalanced = 0.8969 k = 0.2636 j = 0.9121 Pmax (Compression) = 63450.4 Ibs (19035 1 Ibs/ft) OK Pmax (Tension) = 9920 Ibs (2976 Ibs/ft) OK The wall has adequate capacity. E MASONRY -- Concrete Masonry Design System National Concrete Masonry Association Prjct: PINO RESIDENCE Name: Topic: MAIN HOUSE (PERP. TO W. TRUSS) Date: 6-14-2005 Page: Chkd: E.F. Design of a Reinforced Masonry Wall with Out -of -Plane Loads Using the 1999 MSJC ASD Design Code Material and Construction Data 8 in. CMU, Partial grout, running bond Wall Weight = 41 psf (From Tables) Type S mortar Masonry cement / Air -entrained PCL Mortar, Coarse Grout CM Concrete Density = 115 pcf Unit Compressive Strength = 1900 psi fm = 1500 psi (From Tables) Em = 900fm = 1350000 psi Wall Design Details Thickness = 7.625 in. Height = 122.4 in. (Simply Supported Wall, Effective height = H) x=3813in. #5 Bars, Grade 60 Reinforcement Spacing = 48 in On -Center Wall Support: Simply Supported Wall Specified Load Components Load P (lb) a (in) W1(psf) W2 (psf) L (in) h1 (in) h2 (in) Dead 248 0 0 0 0 0 122.4 Live 248 0 0 0 0 0 1224 Soil 0 0 0 0 0 0 122.4 Fluid 0 0 0 0 0 0 122.4 Wind 0 0 59.24 59.24 0 0 122.4 Seismic 0 0 0 0 0 0 122.4 Roof 0 0 0 0 0 0 122.4 Rain 0 0 0 0 0 0 122.4 Snow 0 0 0 0 0 0 122.4 Controlling Load Cases 70 Section Forces with Controlling Flexure and Axial Load--D + W x/H = 0.520 from bottom of wall V =-12.085 Ib/ft ML = 9230.2024 lb-in./ft P = 448.736 Ib/ft at en = 0 in MT = ML + Pen = 9230.2024 lb-in/ft Moment Capacity = 10222.938 lb-in/ft (851.91154 lb-ft/ft) at this axial load Shear Capacity = 1049.5886 Ib/ft The wall is adequate for these critical section forces. Section Forces with Controlling Shearing Force--D + L + Lr + S + R + W x/H = 0.000 from bottom of wall V = 302.124 Ib/ft ML = 0 lb-in./ft P = 914.2 lb/ft at en = 0 in MT = ML + Pen = 0 lb-in/ft Moment Capacity = 11777.013 lb-in/ft at this axial load Shear Capacity = 1049.5886 lb/ft The wall is adequate for these critical section forces. These were found to be load cases that controlled the design. The flexural, shear and axial forces shown are those occuring at the critical section for the case controlled by flexure and at the critical section for the case controlled by shear The following design calculations are for the section with controlling bending moment Section Design Forces Used V = -12 085 Ib/ft (Computed from Loads) ML = 9230.2024 lb-in./ft (Computed from Loads) P. = 448.736 Ib/ft at e = 0 in (Computed from Loads) Computed Design Values Note: 1/3 stress increase was used Effective Width = 48 in ! Wah %A/Ath = R Z14 in nn cffMMMIM Wit"Ith 7 i Allowable Shearing Force = 1049.59 Ib/ft The wall is adequate in shear i Required As = 0.2731 in2 each reinforced cell (0.06827 in2/ft) OK d = 3.813 in. n = 21.48 kbalanced = 0.3092- ibalanced = 0.8969 k=0242 j = 0.9193 Pmax (Compression) = 72606.4 Ibs (18151.6 Ibs/ft) OK Pmax (Tension) = 9920 Ibs (2480 Ibs/ft) OK The wall has adequate capacity. 72 MASONRY -- Concrete Masonry Design System National Concrete Masonry Association Prjct. PINO RESIDENCE Name: Topic. 1 st FLOOR. GUEST HOUSE- ZONE 4 Date: 6-14-2005 Page- Chkd: E.F. Design of a Reinforced Masonry Wall with Out -of -Plane Loads Using the 1999 MSJC ASD Design Code Material and Construction Data 8 in. CMU, Partial grout, running bond Wall Weight = 41 psf (From Tables) Type S mortar Masonry cement / Air -entrained PCL Mortar, Coarse Grout CM Concrete Density = 115 pcf Unit Compressive Strength = 1900 psi fm = 1500 psi (From Tables) Em = 900fm = 1350000 psi Wall Design Details Thickness = 7.625 in Height = 139 in. (Simply Supported Wall, Effective height = H) x = 3.813 in. #5 Bars, Grade 60 Reinforcement Spacing = 48 in. On -Center Wall Support: Simply Supported Wall Specified Load Components Load P (lb) a (in) W 1(psf) W2 (psf) L (in) h1 (in) h2 (in) Dead 2330 0 0 0 0 0 139 Live 525 0 0 0 0 0 139 Sod 0 0 0 0 0 0 139 Fluid 0 0 0 0 0 0 139 Wind 0 0 53.8 53.8 0 0 139 Seismic 0 0 0 0 0 0 139 Roof 0 0 0 0 0 0 139 Ram 0 0 0 0 0 0 139 Snow 0 0 0 0 0 0 139 Controlling Load Cases Section Forces with Controlling Flexure and Axial Load--D + W x/H = 0.520 from bottom of wall i V =-12.4637 Ib/ft ML = 10810.486 lb-in./ft P = 2557.96 Ib/ft at en = 0 in MT = ML + Pen = 10810.486 lb-in/ft Moment Capacity = 16684.443 lb-in/ft (1390.3702 lb-ft/ft) at this axial load Shear Capacity = 1049.5886 Ib/ft The wall is adequate for these critical section forces. Section Forces with Controlling Shearing Force--D + L + Lr + S + R + W x/H = 0.000 from bottom of wall V = 311.592 Ib/ft ML = 0 lb-in./ft P = 3329.92 Ib/ft at en = 0 in MT = ML + Pen = 0 lb-in/ft Moment Capacity = 18057.82 lb-in/ft at this axial load Shear Capacity = 1049.5886 lb/ft The wall is adequate for these critical section forces. These were found to be load cases that controlled the design. The flexural, shear and axial forces shown are those occuring at the critical section for the case controlled by flexure and at the critical section for the case controlled by shear. The following design calculations are for the section with controlling bending moment Section Design Forces Used j V = -12 4637 Ib/ft (Computed from Loads) ML = 10810.486 lb-in./ft (Computed from Loads) P = 2557.96 Ib/ft at e = 0 in (Computed from Loads) i i Computed Design Values Note 1 /3 stress increase was used i Effective Width = 48 in %A/ch \A/irifh = R 411 in nn JOKOHI o Wirith 74 Allowable Shearing Force = 1049.59 Ib/ft The wall is adequate in shear Required As = 0.06829 in2 each reinforced cell (0.01707 in2/ft) OK d = 3.813 in. n = 21.48 kbalanced = 0.3092 Jbalanced = 0.8969 k = 0.2597 j = 0.9134 Pmax (Compression) = 70059.4 Ibs (17514.9 Ibs/ft) OK Pmax (Tension) = 9920 Ibs (2480 Ibs/ft) OK The wall has adequate capacity. 75 MASONRY -- Concrete Masonry Design System National Concrete Masonry Association Prjct: PINO RESIDENCE Name: Topic: 1st FLOOR LIVING NORTH- ZONE 4 Date, 6-14-2005 Page- Chkd: E.F. Design of a Reinforced Masonry Wall with Out -of -Plane Loads Using the 1999 MSJC ASD Design Code Material and Construction Data 8 in. CMU, Partial grout, running bond Wall Weight = 42.5 psf (From Tables) Type S mortar Masonry cement / Air -entrained PCL Mortar, Coarse Grout CM Concrete Density = 115 pcf Unit Compressive Strength = 1900 psi fm = 1500 psi (From Tables) Em = 900fm = 1350000 psi Wall Design Details Thickness = 7.625 in. Height = 141 in. (Simply Supported Wall, Effective height = H) x = 3.813 in. #4 Bars, Grade 60 Reinforcement Spacing = 40 in. On -Center Wall Support: Simply Supported Wall Specified Load Components Load P (lb) a (in) W 1(psf) W2 (psf) L (in) h1 (in) h2 (in) Dead 1146 0 0 0 0 0 141 Live 233 0 0 0 0 0 141 Soil 0 0 0 0 0 0 141 Fluid 0 0 0 0 0 0 141 Wind 0 0 53.8 538 0 0 141 Seismic 0 0 0 0 0 0 141 Roof 0 0 0 0 0 0 141 Rain 0 0 0 0 0 0 141 Snow 0 0 0 0 0 0 141 Controlling Load Cases 7(0 Section Forces with Controlling Flexure and Axial Load--D + W x/H = 0.520 from bottom of wall V =-12.643 Ib/ft ML = 11123.817 lb-in./ft P = 1385.7 Ib/ft at en = 0 in MT = ML + Pen = 11123.817 lb-in/ft Moment Capacity = 11482.519 lb-in/ft (956.8766 lb-ft/ft) at this axial load Shear Capacity = 1104.587 Ib/ft The wall is adequate for these critical section forces. Section Forces with Controlling Shearing Force--D + L + Lr + S + R + W x/H = 0.000 from bottom of wall V = 316.075 Ib/ft ML = 0 lb-in./ft P= 1878 38 lb/ft at en =0 in MT = ML + Pen = 0 lb-in/ft Moment Capacity = 13116.42 lb-in/ft at this axial load Shear Capacity = 1104.587 Ib/ft The wall is adequate for these critical section forces. These were found to be load cases that controlled the design. The flexural, shear and axial forces shown are those occuring at the critical section for the case controlled by flexure and at the critical section for the case controlled by shear. The following design calculations are for the section with controlling bending moment Section Design Forces Used V =-12.643 Ib/ft (Computed from Loads) ML = 11123 817 lb -in /ft (Computed from Loads) P = 1385.7 Ib/ft at e = 0 in (Computed from Loads) Computed Design Values Note 1/3 stress increase was used Effective Width = 40 in. Wah Wirith = R'A9'2 in nn nffcrrtivc %A/frith 77 Allowable Shearing Force = 1104.59 Ib/ft The wall is adequate in shear I Required As = 0.1888 in2 each reinforced cell (0.05664 m2/ft) OK d = 3.813 in. n = 21.48 kbalanced = 0.3092_ ibalanced = 0.8969 k = 0.263 j = 0.9123 Pmax (Compression) = 60872.6 lbs (18261.8 Ibs/ft) OK Pmax (Tension) = 6400 Ibs (1920 Ibs/ft) OK The wall has adequate capacity. FRANCISCO CUELLO JR.,P.E.,INC. Consulting Engineer 1 1 DL+LL 73 JOB SHEET NO OF / l CALCULATED BY DATE SCALE h= 9s ' Lc 212 eel) = s 412 X �I.s{�.��►h� 11 1.3� i � cr,rn: cca, NEHS CUST-BS }dMonc�secv�u• ,ur scat C_�, YI r�••ir :fir,-,:,��r, ..�,>>r,r —nt,_-vim 7(? MR. & MRS. PINO RESIDENCE Title Dsgnr: Description Scope: Job # Date: 11 46AM, 17 JUN 05 rtev be000e II User KW-0606224,Ver560 1-Dec-2003 Steel Column Page 1 (01963-2003 ENERCALC Engineenng Software espinow ecwCalculations Description ST-2 General Information Code Ref AISC 9th ASD, 1997 UBC, 2003 IBC, 2003 NFPA 5000 Steel Section TS4X4X1/4 Fy 36 00 ksi X-X Sidesway - Restrained Duration Factor 1 330 Y-Y Sidesway - Restrained Column Height 10.000 ft Elastic Modulus 29,000.00 ksi End Fixity Pin -Pin X-X Unbraced 10.000 ft Kxx 1.000 Live & Short Term Loads Combined Y-Y Unbraced 10 000 ft Kyy 1.000 Loads Axial Load... Dead Load 23 60 k Ecc. for X-X Axis Moments 0 000 in Live Load 5.00 k Ecc. for Y-Y Axis Moments 0 000 in Short Term Load k ummary Column Design OK Section . TS4X4X1/4, Height = 10 00ft, Axial Loads DL = 23 60, LL = 5 00, ST = 0 00k, Ecc. = 0.000in Unbraced Lengths X-X = 10 00ft, Y-Y = 10 00ft Combined Stress Ratios Dead Live DL + LL DL + ST + (LL if Chosen) AISC Formula H1 - 1 0.4260 0.5162 03881 AISC Formula H1 - 2 0.3043 0.3688 02773 AISC Formula H1 - 3 00902 XX Axis : Fa calc'd per Ep. E2-1, K*L1r < Cc YY Axis Fa calc'd per Eq. E2.1 K*Llr < Cc Stresses Allowable & Actual Stresses Dead Live DL + LL DL + Short Fa Allowable 15.43 ksi 15 43 ksi 15 43 ksi 20 53 ksi fa : Actual 6 57 ksi 1.39 ksi 7 97 ksi 7 97 ksi Fb xx • Allow [F1-6] 21 60 ksi 21.60 ksi 21.60 ksi 28.73 ksi Fb.xx Allow [F1-7] & [F1-8] 21.60 ksi 21.60 ksi 21 60 ksi 28 73 ksi fb xx Actual 0 00 ksi 0 00 ksi 0.00 ksi 0.00 ksi Fb:yy. . Allow [F1-6] 21.60 ksi 21.60 ksi 21.60 ksi 28 73 ksi Fb-yy - Allow [F1-7] & [F1-8] 21 60 ksi 21 60 ksi 21 60 ksi 28 73 kst fb - yy Actual 0.00 ksi 0 00 ksi 0 00 ksi 0.00 ksi Analysis Values F'ex : DL+LL 23,745 psi Cm x DL+LL 060 Cb-x DL+LL 100 F'ey DL+LL 23,745 psi Cm y DL+LL 060 Cb•y DL+LL 100 F'ex DL+LL+ST 31,580 psi Cm•x DL+LL+ST 060 Cb:x DL+LL+ST 100 F'ey - DL+LL+ST 31,580 psi Cm.y DL+LL+ST 060 Cb y DL+LL+ST 1 00 Max X-X Axis Deflection 0 000 in at 0 000 ft Max Y-Y Axis Deflection 0.000 in at 0 000 ft MR. & MRS. PINO RESIDENCE User KW-0606224, Ver 5 8 0, 1-Dec-2003 (01983.2003 ENERCALC Engineering Sol Description ST-2 Title : Dsgnr: Description Scope: Steel Column Job # Date: 11*46AM, 17 JUN 05 Page 2 ecw Calculations Section Properties TS4X4X1/4 Depth 4 000 in Weight 12 19 #/ft Values for LRFD Design.... Thickness 0 250 in Ixx 8 220 in4 J 13.500 in4 Width 4.000 in lyy 8 220 in4 0.00 Sxx 4 110 in3 Zx 4.970 in3 Area 3.59 in2 Syy 4.110 in3 Zy 4 970 in3 Rt 2.000 in Rxx 1 510 in 0.000 Ryy 1 510 in Section Type = TS-Square r FRANCISCO CUELLO JR.,P.E.,INC. Consulting Engineer / "/ A t2 5�b) Crll '� _ �8-4 f ip3-i,; l3 62A + >> e qo 25 1&-4 �� / Capa�� �• = aDoU � JOB /-�r)0 /-� 104 r SHEET NO OF / -7 CALCULATED BY DATE SCALE w 1/J� 747 �00 7�� .t,i 8 40 ,. r , 14. � --,� it =) 4x CP Sod �� ��• �- _ � 9� ; . ' P 11. � 6- = 40 95 2 R �/5j - i 7 5G x 4- y �5G x + cje from NLB5 CUST' M p�lntuttr u�rv�p• d't�oh9f�'� ,Vr rl; 1,- Rra.r•.,o,... .n a,. ,9 �.. r•r����,, ors �r aunt .9 FRANCISCO CUELLO JR.,P.E.,INC. Consulting Engineer �T 2 1.4 y- /—' //5,0 / 1:�2 Z 86� �,l A 37,4 �/ f Aso x q \�y Jos SHEET NO OF CALCULATED BY DATE V� �' V G✓ SCALE r � BO ) n 9. 9 7P57 I MV Rnowm amm NERS CUST�M'prinUny tcrnn• n%., d•tn Sul% lvr d� �,t •�,,;,�oo^r.�,, ,,, �^,�.'t �^. mi„cc,�, ,cr .�, C, rv,^; ,9 q� �G'�ed